2023年《分数的意义》教案篇.docx
《2023年《分数的意义》教案篇.docx》由会员分享,可在线阅读,更多相关《2023年《分数的意义》教案篇.docx(67页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年分数的意义教案篇分数的意义教案1教科书第12页的例1以及相关的练习。1崩斫夥质的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简洁问题。2迸嘌学生的分析实力和归纳概括实力。3蓖学生的主动探究,培育学生的胜利体验,坚决学生学好数学的信念。练习本一、复习引入师:中秋节到了,小华家买了许多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗?等学生完成后,抽学生的作业在视频展示台上展示,集体订正。二、教学新课1苯萄1,理解单位“1”师:其次天
2、,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。师:同学们,你们能用小圆代替月饼,帮小华分一分吗?等学生分好后,抽一个学生分的小圆在台上展示。师:这时,小华的爸爸又提出了问题。爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的1/4。师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?引导学生理解两个1/4代表的数量不一样。师:为什么会出现这种现象呢?引导学生说出前一个1/4是1个月饼的1
3、/4,而后一个1/4是8个月饼的1/4。随学生的回答在图形下出现相应的文字。师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?让学生意识到,整体“1”的改变对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。师:像这样把很多物体组成的一个整体来平均分的分数还许多,请同学们看一看下面这幅图。熊猫图师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?请分一分,并填空。出示单元主题图,要求学生说一说图中的每个分数分别
4、是以什么作为一个整体来平均分的。师:通过上面的探讨,同学们有什么发觉?引导学生说出这些分数都是以很多物体组成的一个整体来平均分的。师:像这样由一个物体或很多物体组成的一个整体,通常我们把它叫做单位“1”。板书单位“1”的含义。师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体?老师再举两个例子,深化学生对单位“1”的理解。2崩斫獠槟煞质的意义师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的
5、1/5。2份有4根小棒,这4根小棒是10根小棒的2/5师:想想自己操作的过程,你能说一说什么是分数吗?学生探讨后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。归纳并板书分数的意义,板书课题。试一试:涂色部分占整个图形的几分之几?师:看看最终(五星图)这个分数,请同学们说说这个分数的.意义。生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(1/5)其中的3份呢?(3/5)35是由多少个1
6、5组成的?(3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢?3彼瞪活中的分数师:分数在我们生活中应用得特别广泛,书上第3页课堂活动中的两个小挚友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?学生说生活中的分数。三、课堂小结(略)四、课堂作业1钡4页课堂活动第2题。2绷废耙坏1,2,3,4题。板书:分数的意义单位“1”分数的意义:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。分数的意义教案2一、复习导入1、依据分数与除法的关系填空。被除数除数说说:分数与除法的关系。2、提问:
7、8020的商是多少?被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)(商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)二、新课1、动手做数学。(1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。(涂上阴影)(2)提问:比较它们的长度、有什么发觉?能依据分数的意义加以说明吗?(3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?(1)视察并探讨分子、分母是按什么规律改变的?1/
8、2 =2/4 = 3/6 = 4/8学生视察的依次可以自选。(2)学生发觉并归纳得出的规律(揭示:分数的基本性质):分数的分子和分母同时乘以或者除以相同的数分数的大小不变。(3)理解意义。提问:刚才我们依据分数的意义来说明分数的基本性质的。能不能依据分数与除法的关系和商不变的规律来说明呢?先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)将分数的基本性质补充完整。3、应用性质、解决问题。(1)指出:应用分数的基本性质可以把一个分数化成
9、分母不同而大小相等的分数。(2)把3/4和15/24化成分母是8而大小不变的分数。要求:独立思索解答、沟通方法(3)师生一起总结方法:看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。(4)独立完成练一练。重点是:学生要能自觉依据分数的基本性质视察分母或分子是怎样改变的,相应地分子或分母就怎样改变。改变的依据是分数的基本性质(5)口答练习十八第2题并说明推断的依据。4、全课总结:你能将这节课的内容及重点归纳概括一下吗?5、作业:完成练习十四理解并驾驭分数的基本性质,同桌相互说分数并指定分母或分子让另一个同学化。三、难点点拨在运用分数的基本性质时,会出现以下几种错误:忽视了“同时”。举例说
10、明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。忽视了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。在理解分数的基本性质时要留意三点:必需强调“同时”;必需强调“乘上或除以相同的数”;必需强调“0除外”。忽视了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的分数的意义教案3教学目的:1、拓宽学生学习的渠道,让学生通过到图书馆查资料,初步了解分数产生的条件、背景和发展史。2、让学生在玩学具的过程中理解单位1,感受什么是分数,归纳出分数的意义,培育学生实际操作和
11、抽象概括实力。3、让学生在轻松和谐的氛围中学习数学,体验学习数学的胜利和愉悦,培育学生对数学的情感。教学重点:单位和分数的意义的教学。教学难点:突破一个整体的教学。教具、学具:苹果、一分米、方块、小棒、小旗、小刀、水彩笔。教学过程:一、介绍分数的产生师:课前,老师让大家回去查阅资料,谁能结合你的资料来说说分数是怎样产生的事?(学生举手)师:(指手里拿着一本书的女生)你来说说。(女生拿着自己查的资料走到讲台前,把自己的资料放在实物投影下)生说:我是从中国少年儿童百科全书上查到的。分数起源于分。在原始社会,人们集体劳动要平均安排果实和猎物,渐渐有了分数的概念。以后在土地计算、土木建筑、水利工程等测
12、量过程中,当所用的长度单位不能量尽所量线段时,便产生了分数。师:您查的挺好的。通过她查的资料我们可以知道分数起源于分。师:(看到有学生举手,指其中一男生)你来说说。男生:(拿着资料来到讲台上的实物投影前,指着资料书)我是从新编小学生数学词典上查到的。人类在生产劳动的长期实践活动中产生了分数,起初是运用详细的分数,如二分之一用一半来表示,四分之一是用一半的一半来表示,经过了相当长的一段时间后,才出现了诸如二分之一、三分之二等分数。师:嗯,好,请回。通过他查的资料,我们可以知道最初的分数表现形式和现在的表现形式一样吗?(学生齐说不一样)1/2是用一半来表示1/4是用一半的一半来表示,那么,照此推算
13、1/8就是(学生齐说一半的一半的一半。)师:看来同学们是真理解了,那谁还有别的资料吗?(学生举手)师:(指一女生)好,你来。女生:(拿着资料走到实物投影前展示)我是从资料书上查到的,我把它摘抄到我的笔记本上。分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相像的分数表示法。再往后,阿拉伯人独创了分数线,分数的表示法就成为现在这样了。师:很好,看来,同学们的资料查的不错。今日我们就不一一沟通了,建议课后大家再把查到的资料相互沟通一下。通过这几个同学查的资料,我们可以知道分数事实上是由人们的生产生活的须要而产生的。二、探究分数的意义1、小组探究,共同参加。师:我们三
14、年级时对分数已经有了初步的相识,你能说出几个详细的分数吗?(学生举手)甲生:3/4,1/2,1/20,88/100师:嗯,说的还挺多。乙生:1/10,1/100,1/50,1/60师:你也知道许多分数。丙生:2/4、2/8、5/10、20/100师:同学们已经知道了许多的分数,那要是给大家几种材料,你们能动手分一分,并且用分数来表示吗?(学生说能)好,拿出老师给大家打算的材料,小组探讨一下。(学生活动,小组探讨五分钟左右。老师巡察,参加小组活动,了解状况。)2、汇报沟通,力求创新。师:大家得到分数了吗?哪个小组来说你们是怎样得到的?(学生举手)师:(指甲组)你们来说说。(一个学生代表甲组,拿着
15、一个苹果走到实物投影前)甲组:我先把这个苹果平均分成了两份,取其中的一份就是二分之一。(老师板书:平均分分数1/2)甲组:我又把这个苹果平均分成了四份,取其中的一份就是四分之一。(老师板书:1/4)甲组:我又把这个苹果平均分成了八份,取其中的一份就是八分之一。(老师板书:1/8)甲组:这样,依次类推,可以分成很多份,得到很多分数。师:行不行啊,老师感觉他里面有句话说的特别好,谁来说说。生说:依次类推。师:那你明白依次类推是什么,意思吗?生说:懂,就是一个一个往下类推。师:也就是说还可以再接着分,看来这个小组已经想的很透彻了,谁还有别的材料须要展示的吗?(学生举手)师:(指乙组)你们来说说。(一
16、学生代表乙组,拿着一分米的纸上来展示)乙组:我们小组是把一分米平均分成了10份,其中的1份就是非常之。假如把;2平均分成2份,其中的一份就是二分之一。假如把它平均分成5份F飞其中的一份就是五分之一c(老师板书:1分米1/10)师:他刚才说了许多分数。咱就根据这个同学刚才说的,把1分米平均分成10份,除了非常之一,我们还能得到别的分数吗一生:把这1分米平均分成10份,取其中的份,就是非常之一取其中的两份,就是非常之二,取其中的三份就是非常之三,这样,依次推下来,就可以得到非常之几。师:也就是表示其中几份就是它的非常之几,你们同意吗?(学生齐说:同意)师:谁还有别的材料须要展示吗?(学生举手)师:
17、(指丙组)你们来说说。(两个学生代表丙组,拿着八个方块到前面来展示)丙组:我们把八个方块平均分成两份,取其中的一份,就是二分之(老师板书:八个 1/2 )丙组:把八个方块平均分成四份,取其中的一份就是四分之一,两份就是四分之二,三份就是四分之三。(老师板书:1/4、2/4、3/4)(老师看到下面同学有许多急着举手的)师:你们有问题吗?一女生:他把它平均分成4份,一份是两个方块,他为什么说是四分之一呢?展示的丙组男生回答:把这八个方块平均分成4份,其中的一份就是四分之一。女生质疑:这其中的一份是两个方块,为什么说是1/4,我还不明白。丙组男生:因为这两个方块组成一份。师:你满足吗?女生:不满足。
18、师:不算很满足,那你们能再来说明说明吗?丙组女生很急迫的说明:因为它要分成4份的话,这两个方块,并不是论块,而是论份,这两个方块组成了一份,是四份中的一份,所以是四分之一。师:你说的很有特点,看来这是一个难点。刚才同学们提的问题很有价值,我们要想得到一个分数,必需要把八个方块看成一个整体,这两个方块或者四个方块只是这个整体的一部分,我们就可以用分数来表示。师:那谁还有别的材料须要展示。(学生举手)师:(指丁组)你们来说说(一生代表了组,拿着10根小棒走到前面展示)丁组:我这里有10根小棒,我把它平均分成10份,其中的这一份,就是非常之一,然后,再把它平均分成5份,其中的一份就是五分之一。再把它
19、平均份成两分,其中的一份就是二分之一。(老师板书:10根小棒1/10、1/5、1/2)师:我想问你一个问题,我把10根小棒看成一个整体,平均分成两份,其中的一份是二分之一,那这一份是几根小棒?生:是5根小棒。师:很好,请回,(指举手的同学)你想展示?生:我这有6面红旗,我首先平均拿走一面红旗就是六分之一。拿掉两面红旗就是六分之二,依次类推,把六个红旗都拿完了,就是六分之六。师:平均拿走一面红旗是什么意思?生补充:我想换一种说法,就是把这六面红旗平均分成六份,拿走其中的一份就是六分之一。师:你说的真好。我们要想得到几分之几时,必需要先把它平均分成几份。(老师板书:6面小旗1/6)3、抽象概括,构
20、建新知。师:我们刚才得到了许多的分数,(指黑板)以前我们探讨过了分一个物体,(板书:一个物体)分一个计量单位。(板书:一个计量单位)今日我们主要探讨了分多个物体组成的一个整体,(板书:一个整体)这些我们通常都可以把它们叫做单位1。(板书:单位1)师:除了这些你还能再举几个单位1的例子吗?生:一个西瓜。生:一个蛋糕。生:一个苹果。师:刚才同学都举的是一个物体的,还能举一些别的吗?生:10个人。生:10本书。生:8个铅笔盒。生:5瓶啤酒。生:3块橡皮。师:看来同学们已经理解了单位1。那你能结合刚才的这些例子用自己的话说说什么叫分数吗?小组先探讨探讨。(小组探讨一分钟左右)师:谁来说说。甲生:把一个
21、物体平均分成几份,取其中的几份,就是几分之几。乙生:把一个物体平均分成若干份,取其中的几份,就是几分之几。师:刚才都是说分一个物体,还有没有别的啦?丙生:把几个同样的物体平均分成若干份,取其中的几份,就是几分之几。师:通过你们说的,老师知道你们已经明白了,那么究竟数学家是怎样归纳的呢,请同学们看屏幕。屏幕展示:把单位平均分成若干份,表示这样的一份或几份的数叫做分数。找生读,学生质疑。师:这就是我们这节课探讨的分数的意义。(板书课题:分数的意义)师:那你能通过3/10,说说分数由哪几部分组成的吗?生:分数线、分子、分母组成。师:分母、分子各表示什么意思?生:分母表示把一个物体平均分成几份,分子表
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分数的意义 2023 分数 意义 教案
限制150内