《一次函数知识点和直线位置关系_中学教育-中考.pdf》由会员分享,可在线阅读,更多相关《一次函数知识点和直线位置关系_中学教育-中考.pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 一次函数(一)函数 1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量 x 和 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把 x 称为自变量,把 y 称为因变量,y是 x 的函数。*判断 Y 是否为 X 的函数,只要看 X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零
2、;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按
3、照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。(二)一次函数 1、一次函数的定义 一般地,形如ykxb(k,b是常数,且0k)的函数,叫做一次函数,其中 x 是自变量。当0b 时,一次函数ykx,又叫做正比例函数。一次函数的解析式的形式是ykxb,要判断一个函数是否是一次函数,就是判断是否能化成
4、以上形式 当0b,0k 时,ykx仍是一次函数 当0b,0k 时,它不是一次函数 正比例函数是一次函数的特例,一次函数包括正比例函数 学习必备 欢迎下载 2、正比例函数及性质 一般地,形如 y=kx(k 是常数,k0)的函数叫做正比例函数,其中 k 叫做比例系数.注:正比例函数一般形式 y=kx(k 不为零)k 不为零 x 指数为 1 b 取零 当 k0 时,直线 y=kx 经过三、一象限,从左向右上升,即随 x 的增大 y 也增大;当 k0 时,图像经过一、三象限;k0,y 随 x 的增大而增大;k0 时,向上平移;当 b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y 随 x
5、 的增大而增大;k0 时,将直线 y=kx 的图象向上平移 b 个单位;当 b0 b0 经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限 图象从左到右上升,y 随 x 的增大而增大 k0 时,向上平移;当 b0 时,直线经过一、三象限;k0,y 随 x 的增大而增大;(从左向右上升)数值的量函数一般的在一个变化过程中如果有两个变量和并且对于的每一个确定的值都有唯一确定的值与其对应那么我们就把称为自变量把称为因变量是的函数判断是否为的函数只要看取值确定的时候是否有唯一确定的值与之对应数定义域为全体实数关系式含有分式时分式的分母不等于零关系式含有二次根式时被开放方数大于等于零关系式中含
6、有指数为零的式子时底数不等于零实际问题中函数定义域还要和实际情况相符合使之有意义函数的解析式用含有表数的每对对应值分别作为点的横纵坐标那么坐标平面内由这些点组成的图形就是这个函数的图象描点法画函数图形的一般步骤第一步列表表中给出一些自变量的值及其对应的函数值第二步描点在直角坐标系中以自变量的值为横坐标学习必备 欢迎下载 k0时,将直线y=kx 的图象向上平移b个单位;b0时,将直线y=kx 的图象向下平移b个单位.6、直线11bxky(01k)与22bxky(02k)的位置关系(1)两直线平行21kk 且21bb (2)两直线相交21kk (3)两直线重合21kk 且21bb (4)两直线垂直
7、121kk 7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将 x、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.8、两条直线的位置关系:直线111bxky与直线222bxky的位置:(1)1k=2k且1b2b时两直线平行 (2)1k2k时两直线相交 (3)1k=2k且1b=2b时两直线重合 (4)1k2k=1 时两直线垂直 数值的量函数一般的在一个变化过程中如果有两个变量和并且对于的每一个确定的值都有唯一确定的值与其对应那么我们就把称为自变量把称为因变量是的函数判断是否为的函数只要看取值确定的时候是否有唯一确定的值与之对应数定义域为全体实数关系式含有分式时分式的分母不等于零关系式含有二次根式时被开放方数大于等于零关系式中含有指数为零的式子时底数不等于零实际问题中函数定义域还要和实际情况相符合使之有意义函数的解析式用含有表数的每对对应值分别作为点的横纵坐标那么坐标平面内由这些点组成的图形就是这个函数的图象描点法画函数图形的一般步骤第一步列表表中给出一些自变量的值及其对应的函数值第二步描点在直角坐标系中以自变量的值为横坐标
限制150内