专升本高等数学习题集及答案_中学教育-中考.pdf
《专升本高等数学习题集及答案_中学教育-中考.pdf》由会员分享,可在线阅读,更多相关《专升本高等数学习题集及答案_中学教育-中考.pdf(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优秀学习资料 欢迎下载 第一章 函数 一、选择题 1.下列函数中,【C 】不是奇函数 A.xxy tan B.yx C.)1()1(xxy D.xxy2sin2 2.下列各组中,函数)(xf与)(xg一样的是【】A.33)(,)(xxgxxf B.xxxgxf22tansec)(,1)(C.11)(,1)(2xxxgxxf D.2ln)(,ln2)(xxgxxf 3.下列函数中,在定义域内是单调增加、有界的函数是【】A.+arctanyxx B.cosyx C.arcsinyx D.sinyxx 4.下列函数中,定义域是,+,且是单调递增的是【】A.arcsinyx B.arccosyx C.
2、arctanyx D.arccotyx 5.函数arctanyx的定义域是【】A.(0,)B.(,)2 2 C.,2 2 D.(,+)6.下列函数中,定义域为 1,1,且是单调减少的函数是【】A.arcsinyx B.arccosyx C.arctanyx D.arccotyx 7.已知函数arcsin(1)yx,则函数的定义域是【】A.(,)B.1,1 C.(,)D.2,0 8.已知函数arcsin(1)yx,则函数的定义域是【】A.(,)B.1,1 C.(,)D.2,0 9.下列各组函数中,【A 】是相同的函数 A.2()lnf xx和 2lng xx B.()f xx和 2g xx C.
3、()f xx和 2()g xx D.()sinf xx和()arcsing xx 10.设下列函数在其定义域内是增函数的是【】A.()cosf xx B.()arccosf xx C.()tanf xx D.()arctanf xx 11.反正切函数arctanyx的定义域是【】A.(,)2 2 B.(0,)C.(,)D.1,1 12.下列函数是奇函数的是【】优秀学习资料 欢迎下载 A.arcsinyxx B.arccosyxx C.arccotyxx D.2arctanyxx 13.函数53sinlnxy 的复合过程为【A 】A.xwwvvuuysin,ln,35 B.xuuysinln,5
4、3 C.xuuysin,ln53 D.xvvuuysin,ln,35 二、填空题 1.函数5arctan5arcsinxxy的定义域是_.2.()2arcsin3xf xx 的定义域为 _.3.函数1()2arcsin3xf xx 的定义域为 _。4.设()3xf x,()sing xxx,则()g f x=_.5.设2()f xx,()lng xxx,则()f g x=_.6.()2xf x,()lng xxx,则()f g x=_.7.设()arctanf xx,则()f x的值域为_.8.设2()arcsinf xxx,则定义域为 .9.函数ln(2)arcsinyxx 的定义域为 .1
5、0.函数2sin(31)yx是由_复合而成。第二章 极限与连续 一、选择题 1.数列nx有界是数列nx收敛的【】A.充分必要条件 B.充分条件 C.必要条件 D.既非充分条件又非必要条件 2.函数)(xf在点0 x处有定义是它在点0 x处有极限的【】A.充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.无关条件 3.极限20lim(1)kxxxe,则k【】A.2 B.2 C.2e D.2e 4.极限sin2limxxx【】A.2 B.C.不存在 D.0 域内是单调增加有界的函数是下列函数中定义域是且是单调递增的是函数的定义域是下列函数中定义域为且是单调减少的函数是则函数的定义域是则
6、函数的定义域是下列各组函数中是相同的函数已知函数已知函数和和和和设下列函程为二填空题函数的定义域是的定义域为函数的定义域为设设则则则则的值域为则定义域为的定义域为是由复合而成设设函数函数第二章极限与连续一选择题数列有界是数列收敛的充分必要条件充分条件必要条件函数处有定义是它则极限不存在优秀学习资料欢迎下载极限不存在函数下列说法正确的是为其第二类间断点为其跳跃间断点为其可去间断点为其振荡间断点函数的可去间断点的个数为为函数的跳跃间断点无穷间断点连续点可去间断点当时是的低阶无优秀学习资料 欢迎下载 5.极限xxx10)sin1(lim【】A.1 B.C.不存在 D.e 6.函数231)(22xxx
7、xf,下列说法正确的是【】.A.1x为其第二类间断点 B.1x为其可去间断点 C.2x为其跳跃间断点 D.2x为其振荡间断点 7.函数()sinxf xx的可去间断点的个数为【】.A.0 B.1 C.2 D.3 8.1x为函数231)(22xxxxf的【】.A.跳跃间断点 B.无穷间断点 C.连续点 D.可去间断点 9.当0 x时,2x是2xx的【】A.低阶无穷小 B.高阶无穷小 C.等价无穷小 D.同阶但非等价的的无穷小 10.下列函数中,定义域是 1,1,且是单调递减的是【】A.arcsinyx B.arccosyx C.arctanyx D.arccotyx 11.下列命题正确的是【】A
8、.有界数列一定收敛 B.无界数列一定收敛 C.若数列收敛,则极限唯一 D.若函数()f x在0 xx处的左右极限都存在,则()f x在此点处的极限存在 12.当变量0 x 时,与2x等价的无穷小量是【】A.s i n x B.1cos2 x C.2ln 1x D.21xe 13.1x 是函数22()1xf xx的【】.A.无穷间断点 B.可去间断点 C.跳跃间断点 D.连续点 14.下列命题正确的是【】A.若0()f xA,则0lim()xxf xA B.若0lim()xxf xA,则0()f xA C.若0lim()xxf x存在,则极限唯一 D.以上说法都不正确 15.当变量0 x 时,与
9、2x等价的无穷小量是【】A.tan x B.1cos2 x C.2ln 1x D.21xe 域内是单调增加有界的函数是下列函数中定义域是且是单调递增的是函数的定义域是下列函数中定义域为且是单调减少的函数是则函数的定义域是则函数的定义域是下列各组函数中是相同的函数已知函数已知函数和和和和设下列函程为二填空题函数的定义域是的定义域为函数的定义域为设设则则则则的值域为则定义域为的定义域为是由复合而成设设函数函数第二章极限与连续一选择题数列有界是数列收敛的充分必要条件充分条件必要条件函数处有定义是它则极限不存在优秀学习资料欢迎下载极限不存在函数下列说法正确的是为其第二类间断点为其跳跃间断点为其可去间断
10、点为其振荡间断点函数的可去间断点的个数为为函数的跳跃间断点无穷间断点连续点可去间断点当时是的低阶无优秀学习资料 欢迎下载 16.0 x 是函数2+1()1cos2xf xx的【】.A.无穷间断点 B.可去间断点 C.跳跃间断点 D.连续点 17.0(+0)f x与0(0)f x 都存在是()f x在0 x连续的【】A.必要条件 B.充分条件 C.充要条件 D.无关条件 18.当变量0 x 时,与2x等价的无穷小量是【】A.arcsin x B.1cos2 x C.2ln 1x D.21xe 19.2x 是函数221()32xf xxx的【】.A.无穷间断点 B.可去间断点 C.跳跃间断点 D.
11、连续点 20.nu收敛是nu有界的【】A.充分条件 B.必要条件 C.充要条件 D.无关条件 21.下面命题正确的是【】A.若nu有界,则nu发散 B.若nu有界,则nu收敛 C.若nu单调,则nu收敛 D.若nu收敛,则nu有界 22.下面命题错误的是【】A.若nu收敛,则nu有界 B.若nu无界,则nu发散 C.若nu有界,则nu收敛 D.若nu单调有界,则nu收敛 23.极限10lim(13)xxx【】A.B.0 C.3e D.3e 24.极限10lim(13)xxx【】A.B.0 C.3e D.3e 25.极限20lim(12)xxx【】A.4e B.1 C.2e D.4e 26.1x
12、 是函数32()2xxf xxx 的【】A.连续点 B.可去间断点 C.无穷间断点 D.跳跃间断点 27.2x 是函数32()2xxf xxx 的【】A.连续点 B.可去间断点 C.无穷间断点 D.跳跃间断点 28.2x 是函数224()2xf xxx 的【】域内是单调增加有界的函数是下列函数中定义域是且是单调递增的是函数的定义域是下列函数中定义域为且是单调减少的函数是则函数的定义域是则函数的定义域是下列各组函数中是相同的函数已知函数已知函数和和和和设下列函程为二填空题函数的定义域是的定义域为函数的定义域为设设则则则则的值域为则定义域为的定义域为是由复合而成设设函数函数第二章极限与连续一选择题
13、数列有界是数列收敛的充分必要条件充分条件必要条件函数处有定义是它则极限不存在优秀学习资料欢迎下载极限不存在函数下列说法正确的是为其第二类间断点为其跳跃间断点为其可去间断点为其振荡间断点函数的可去间断点的个数为为函数的跳跃间断点无穷间断点连续点可去间断点当时是的低阶无优秀学习资料 欢迎下载 A.连续点 B.可去间断点 C.无穷间断点 D.跳跃间断点 29.下列命题不正确的是【】A.收敛数列一定有界 B.无界数列一定发散 C.收敛数列的极限必唯一 D.有界数列一定收敛 30.极限211lim1xxx的结果是【】A.2 B.2 C.0 D.不存在 31.当 x0 时,1sinxx是【】A.无穷小量
14、B.无穷大量 C.无界变量 D.以上选项都不正确 32.0 x 是函数sin()xf xx的【】.A.连续点 B.可去间断点 C.跳跃间断点 D.无穷间断点 33.设数列的通项(1)1nnxn,则下列命题正确的是【】A.nx发散 B.nx无界 C.nx收敛 D.nx单调增加 34.极限21limxxxx的值为【】A.1 B.1 C.0 D.不存在 35.当0 x 时,sinxx是x的【】A.高阶无穷小 B.同阶无穷小,但不是等价无穷小 C.低阶无穷小 D.等价无穷小 36.0 x 是函数1()1xf xe的【】.A.连续点 B.可去间断点 C.跳跃间断点 D.无穷间断点 37.观察下列数列的变
15、化趋势,其中极限是 1 的数列是【】A.1nnxn B.2(1)nnx C.13nxn D.211nxn 38.极限0limxxx的值为【】A.1 B.1 C.0 D.不存在 39.下列极限计算错误的是【】A.sinlim1xxx B.0sinlim1xxx C.1lim(1)xxex D.10lim(1)xxxe 40.1x 是函数22()2xxf xxx 的【】.A.连续点 B.可去间断点 C.无穷间断点 D.跳跃间断点 41.当x时,arctanx 的极限【】域内是单调增加有界的函数是下列函数中定义域是且是单调递增的是函数的定义域是下列函数中定义域为且是单调减少的函数是则函数的定义域是则
16、函数的定义域是下列各组函数中是相同的函数已知函数已知函数和和和和设下列函程为二填空题函数的定义域是的定义域为函数的定义域为设设则则则则的值域为则定义域为的定义域为是由复合而成设设函数函数第二章极限与连续一选择题数列有界是数列收敛的充分必要条件充分条件必要条件函数处有定义是它则极限不存在优秀学习资料欢迎下载极限不存在函数下列说法正确的是为其第二类间断点为其跳跃间断点为其可去间断点为其振荡间断点函数的可去间断点的个数为为函数的跳跃间断点无穷间断点连续点可去间断点当时是的低阶无优秀学习资料 欢迎下载 A.2 B.2 C.D.不存在 42.下列各式中极限不存在的是【】A.327lim1 xxxx B.
17、2211lim21 xxxx C.sin3limxxx D.201limcosxxxx 43.无穷小量是【】A.比 0 稍大一点的一个数 B.一个很小很小的数 C.以 0 为极限的一个变量 D.数 0 44.极限10lim(1)xxx【】A.B.1 C.1e D.e 45.1x是函数21()1xf xx的【】.A.可去间断点 B.跳跃间断点 C.无穷间断点 D.连续点 46.0 x是函数1sin0()10 xxxf xxex的【】A.连续点 B.可去间断点 C.跳跃间断点 D.无穷间断点 47.01limsinxxx的值为【】A.1 B.C.不存在 D.0 48.当 x时下列函数是无穷小量的是
18、【】A.cosxxx B.sin xx C.2sinxxx D.1(1)xx 49.设210()210 xxf xxx,则下列结论正确的是【】A.()f x在0 x 处连续 B.()f x在0 x 处不连续,但有极限 C.()f x在0 x 处无极限 D.()f x在0 x 处连续,但无极限 二、填空题 1.当0 x时,xcos1是2x的_无穷小量.2.0 x 是函数xxxfsin)(的_ 间断点.3.xxx20)11(lim_。域内是单调增加有界的函数是下列函数中定义域是且是单调递增的是函数的定义域是下列函数中定义域为且是单调减少的函数是则函数的定义域是则函数的定义域是下列各组函数中是相同的
19、函数已知函数已知函数和和和和设下列函程为二填空题函数的定义域是的定义域为函数的定义域为设设则则则则的值域为则定义域为的定义域为是由复合而成设设函数函数第二章极限与连续一选择题数列有界是数列收敛的充分必要条件充分条件必要条件函数处有定义是它则极限不存在优秀学习资料欢迎下载极限不存在函数下列说法正确的是为其第二类间断点为其跳跃间断点为其可去间断点为其振荡间断点函数的可去间断点的个数为为函数的跳跃间断点无穷间断点连续点可去间断点当时是的低阶无优秀学习资料 欢迎下载 4.函数11arctan)(xxf的间断点是 x=_。5.xxexxxsin)1(lim20_.6.已知分段函数sin,0(),0 xx
20、f xxxa x连续,则a=_.7.由重要极限可知,10lim 1+2xxx_.8.已知分段函数sin,0()2,0 xxf xxxa x连续,则a=_.9.由重要极限可知,1lim(1)2xxx_.10.知分段函数 sin1,1()1,1xxf xxxb x连续,则b=_.11.由重要极限可知,10lim(12)xxx_.12.当 x1 时,233 xx与2lnxx相比,_是高阶无穷小量.13.251lim 12nnn=_.14.函数22(1)()23xf xxx的无穷间断点是 x=_.15.0tan2lim3xxx=_.16.351lim 12nnn=_.17.函数22(1)()23xf
21、xxx的可去间断点是 x=_.18.201coslimxxx=_.19.253lim 12nnn=_.20.函数221()34xf xxx的可去间断点是 x=_.21.当0 x 时,sin x与3x相比,_是高阶无穷小量.域内是单调增加有界的函数是下列函数中定义域是且是单调递增的是函数的定义域是下列函数中定义域为且是单调减少的函数是则函数的定义域是则函数的定义域是下列各组函数中是相同的函数已知函数已知函数和和和和设下列函程为二填空题函数的定义域是的定义域为函数的定义域为设设则则则则的值域为则定义域为的定义域为是由复合而成设设函数函数第二章极限与连续一选择题数列有界是数列收敛的充分必要条件充分条
22、件必要条件函数处有定义是它则极限不存在优秀学习资料欢迎下载极限不存在函数下列说法正确的是为其第二类间断点为其跳跃间断点为其可去间断点为其振荡间断点函数的可去间断点的个数为为函数的跳跃间断点无穷间断点连续点可去间断点当时是的低阶无优秀学习资料 欢迎下载 22.计算极限221lim 1nnn=_.23.设函数 21,0,0 xxf xxax,在0 x 处连续,则a _ 24.若当1x 时,()f x是1x的等价无穷小,则1()lim(1)(1)xf xxx_ .25.计算极限1lim 1xxx=_.26.设e,0,(),0.xxf xxax 要使()f x在0 x 处连续,则a=.27.当 x0
23、时,sinxx与x相比,是高阶无穷小量.28.计算极限451lim 11xxx=.29.为使函数22,0(),0 xxf xxax 在定义域内连续,则a=.30.当 x0 时,xcos1与sin x相比,_是高阶无穷小量.31.当 x0 时,24x与3sin x相比,_是高阶无穷小量.32.当 x1 时,21x 与 sin1x相比,_是高阶无穷小量.33.若3lim 1xxkex,则k=_.34.函数21()34xf xxx的无穷间断点是 x=_.35.极限2011limxxx=_.36.设2sin,fxxx求 limxf x=_.37.设函数cos,0(),0 xxf xaxx在0 x 处连
24、续,则a=_.38.0 x 是函数xxxfsin)(的 (填无穷、可去或跳跃)间断点.39.函数21()23xf xxx的可去间断点是 x=_.40.2lim 1xxx_ 三、计算题 域内是单调增加有界的函数是下列函数中定义域是且是单调递增的是函数的定义域是下列函数中定义域为且是单调减少的函数是则函数的定义域是则函数的定义域是下列各组函数中是相同的函数已知函数已知函数和和和和设下列函程为二填空题函数的定义域是的定义域为函数的定义域为设设则则则则的值域为则定义域为的定义域为是由复合而成设设函数函数第二章极限与连续一选择题数列有界是数列收敛的充分必要条件充分条件必要条件函数处有定义是它则极限不存在
25、优秀学习资料欢迎下载极限不存在函数下列说法正确的是为其第二类间断点为其跳跃间断点为其可去间断点为其振荡间断点函数的可去间断点的个数为为函数的跳跃间断点无穷间断点连续点可去间断点当时是的低阶无优秀学习资料 欢迎下载 1.求极限32224lim4xxxx 2.求极限20cos3cos2limln(1)xxxx 3.求极限20(1)limln(16)xxexx 4.求极限0(1)sinlimln(16)xxexxx 5.求极限20(1cos)sinlimln(16)xxxxx 6.求极限201 coslim(1)xxxx e 7.求极限201 coslimln(1)xxx 8.求极限1112lim2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等 数学 习题集 答案 中学 教育 中考
限制150内