新人教版八年级数学上知识点总结_中学教育-中学学案.pdf
《新人教版八年级数学上知识点总结_中学教育-中学学案.pdf》由会员分享,可在线阅读,更多相关《新人教版八年级数学上知识点总结_中学教育-中学学案.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习好资料 欢迎下载 伯达教育八年级数学上册知识点总结 第十一章 三角形 一、三角形的概念 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。二、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做 三角形的角平分线。(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。三、三角形的分类 按边分:等腰三角形、等边三角形、不等边三角形 按角分:直角三角形、锐角三角形、钝角三角形 四、三角形的三边关系定理及推论(1)三角形三边关系定理
2、:三角形的两边之和大于第三边;推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角形;当已知两边时,可确定第三边的范围;证明线段不等关系。五、三角形的内角和定理及推论(三角形内角和等于 180)推论:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。六、三角形的面积=(底高)/2 七、多边形知识要点(解决问题时常分割为三角形来解决)(1)多边形的定义:在同一平面内,由一些线段首尾顺次相接组成的图形叫做多边形(边
3、数大于或等于 3)(2)多边形的一些要素:(边、顶点、内角、外角)(3)多边形的分类:(凸多边形、凹多边形)(4)多边形通常还以边数命名,多边形有 n 条边就叫做 n 边形 (5)正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.学习好资料 欢迎下载(6)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.从 n 边形一个顶点可以引(n 3)条对角线,将多边形分成(n 2)个三角形。n 边形共有 n(n-3)/2条对角线。(7)多边形的内角和及外角和:内角和:180(n-2);(n3,n 是正整数);多边形的外角和等于 360。八、镶嵌的概念和特征 (1)定义:用一些
4、不重叠摆放的多边形把平面的一部分完全覆盖,常把这类问题叫做用多边形覆盖平面(或平面镶嵌),这里的多边形可以形状相同也可以形状不同。(2)实现镶嵌的条件:拼接在同一点的各个角的和恰好等于 360;相邻的多边形有公共边。(3)常见的一些正多边形的镶嵌问题:用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为 360。只用一种正多边形镶嵌地面 用两种或两种以上的正多边形镶嵌地面(交接处各角之和能否拼成一个周角)第十二章 全等三角形 一、全等三角形(“”:全等于)1、能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形的性
5、质:全等三角形的对应边相等、对应角相等。全等三角形的周长相等、面积相等。全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定(SSS、SAS、ASA、AAS、HL)4、证明两个三角形全等的基本思路:(找相等的边和角)二、角的平分线:1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:1、要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;2、表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;3、“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三
6、角形不一定全等;4、时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。条线段首尾顺次相接所组成的图形叫做三角形二三角形中的主要线段三角形的一个角的平分线与这个角的对边相交这个角的顶点和交点间的线段叫做三角形的角平分线在三角形中连接一个顶点和它对边的中点的线段叫做三角形的中按边分等腰三角形等边三角形不等边三角形按角分直角三角形锐角三角形钝角三角形四三角形的三边关系定理及推论三角形三边关系定理三角形的两边之和大于第三边推论三角形的两边之差小于第三边三角形三边关系定理及推论的理及推论三角形内角和等于推论直角三角形的两个锐角
7、互三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角大于任何一个和它不相邻的内角注在同一个三角形中等角对等边等边对等角大角对大边大边对大角六三角学习好资料 欢迎下载 5、全等变换:只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换包括以下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折 180,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。第十三章 轴对称 一、轴对称图形 1、把一个图形沿一条直线折叠,若直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
8、这条直线就是 它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、轴对称图形和轴对称的区别与联系(1)区别:轴对称图形是指一个具有特殊形状的图形,只对一个图形而言,对称轴不是只有一条;轴对称是指两个图形的位置关系,必须涉及两个图形,只有一条对称轴.(2)联系:如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.4、轴对称的性质:关于某直线对
9、称的两个图形是全等形;若两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线 1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线;2、线段垂直平分线上的点与这条线段的两个端点的距离相等;3、与一条线段两个端点距离相等的点,在线段的垂直平分线上。4、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 三、用坐标表示轴对称:点(x,y)关于 x 轴对称的点的坐标为(x,-y)点(
10、x,y)关于 y 轴对称的点的坐标为(-x,y)点(x,y)关于原点对称的点的坐标为(-x,-y)四、等腰三角形 1、性质:.等腰三角形的两个底角相等(等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)等腰直角三角形的两个底角相等且等于 45 等腰三角形的底角只能为锐角,但顶角可为钝角(或直角)条线段首尾顺次相接所组成的图形叫做三角形二三角形中的主要线段三角形的一个角的平分线与这个角的对边相交这个角的顶点和交点间的线段叫做三角形的角平分线在三角形中连接一个顶点和它对边的中点的线段叫做三角形的中按边分等腰三角形等边三角形不等边三角形按角分直角三角形锐角三角形钝角三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 知识点 总结 中学 教育
限制150内