数列基础知识归纳_中学教育-高考.pdf
《数列基础知识归纳_中学教育-高考.pdf》由会员分享,可在线阅读,更多相关《数列基础知识归纳_中学教育-高考.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结 优秀知识点 必修 5 数列础知识归纳 一、数列的有关概念:1数列的定义:按一定次序排列的一列数叫做数列(1)数列中的每个数都叫这个数列的项记作 an,在数列第一个位置的项叫第 1 项(或首项),在第二个位置的叫第 2 项,序号为 n 的项叫第 n 项(也叫通项),记作 an(2)数列的一般形式:a1,a2,a3,an,简记作 an 2通项公式的定义:如果数列 an 的第 n 项与 n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式 说明:(1)an 表示数列,an表示数列中的第 n 项,an=f(n)表示数列的通项公式;(2)同一个数列的通项公式的形式不一定唯一例如
2、,an=(1)n=1,2 1()1,2n kkn k Z;(3)不是每个数列都有通项公式例如,1,1.4,1.41,1.414,(4)从函数观点看,数列实质上是定义域为正整数集 N*(或它的有限子集)的函数 f(n),当自变量 n 从 1 开始依次取值时对应的一系列函数值 f(1),f(2),f(3),f(n),通常用 an来代替 f(n),其图象是一群孤立的点 3数列的分类:(1)按数列项数是有限还是无限分:有穷数列和无穷数列;(2)按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列 4递推公式的定义:如果已知数列 an 的第 1 项(或前几项),且任一项 an与
3、它的前一项 an 1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式 5 数列 an的前 n 项和的定义:Sn=a1+a2+a3+an=1nkka称为数列 an 的前 n 项和 要理解 Sn与 an之间的关系 6等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么数 列 数列的概念 数列的定义 数列的分类 数列的性质 等差数列与等比数列 等差数列与等比数列的概念 等差数列与等比数列的性质 等差数列与等比数列的基本运算 数列的求和 倒序相加 错位相减 裂项相消 其他方法 数列应用 名师总结 优秀知识点 这个数列就叫等差数列,这个
4、常数叫做等差数列的公差,公差通常用字母 d 表示 即:an 为等比数列 an+1 an=d 2an+1=an+an+2 an=kn+b Sn=An2+Bn 7等比数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比 公比通常用字母 q 表示(q 0),即:an 为等比数列 an+1:an=q(q 0)21 2 n n na a a 注意条件“从第 2 项起”、“常数”q由定义可知:等比数列的公比和项都不为零 二、等差、等比数列的性质:等差数列(AP)等比数列(GP)通项公式 an=a1+(n 1)d an=a1
5、qn 1(a1 0,q 0)前 n 项和 11()(1)2 2nnn a a n nS na d 11,1,(1),1.1nnna qSa qqq 性质 an=am+(n m)d an=amqn m m+n=s+t,则 am+an=as+at m+n=s+t,则 am an=as at Sm,S2m Sm,S3m S2m,成AP Sm,S2m Sm,S3m S2m,成 GP(q 1 或 m 不为偶数)ak,ak+m,ak+2m,成 AP,d=md ak,ak+m,ak+2m,成 GP,q=qm 注:1等差(等比)数列 an 的任意等距离的项构成的数列仍为等差(等比)数列 2三个数成等差的设法:
6、a d,a,a+d;四个数成等差的设法:a 3d,a d,a+d,a+3d;3三个数成等比的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)4 an 为等差数列,则 nac(c 0)是等比数列 5 bn(bn 0)是等比数列,则 logcbn(c 0 且 c 1)是等差数列 6公差为 d 的等差数列 an 中,若 d 0,则 an 是递增数列;若 d=0,则 an 是常数列;若 d 0,q 1 或 a1 0,0 q 1 时为递增数列;(2)当 a1 1 或 a1 0,0 q 1 时为递减数列;(3)当 q 0,d 0 时,Sn有最大值;a1 0 时,S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 基础知识 归纳 中学 教育 高考
限制150内