初中数学教案设计:一元二次方程的应用(优秀6篇).docx
《初中数学教案设计:一元二次方程的应用(优秀6篇).docx》由会员分享,可在线阅读,更多相关《初中数学教案设计:一元二次方程的应用(优秀6篇).docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学教案设计:一元二次方程的应用(优秀6篇)数学一元二次方程教案设计 篇一 教学目的 1、了解整式方程和一元二次方程的概念; 2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。 3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。 教学难点和难点: 重点: 1、一元二次方程的有关概念 2、会把一元二次方程化成一般形式 难点:一元二次方程的含义。 教学过程设计 一、引入新课 引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪? 分析:1.要解决这个问题,就要求出铁片的长和宽。 2、这
2、个问题用什么数学方法解决?(间接计算即列方程解应用题。 3、让学生自己列出方程( x(x十5)=150 ) 深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗? 二、新课 1、从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程-一元一二次方程(板书课题) 2、什么是元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一
3、点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程。(板书一元二次方程的定义) 3、强化一元二次方程的概念 下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程? (1)3x十2=5x3:(2)x2=4 (2)(x十3)(3x4)=(x十2)2; (4)(x1)(x2)=x2十8 从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的次数是否是2。 4、一元二次方程概念
4、的延伸 提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗? 引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式 ax2+bx+c=0 (a0) 1)。提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b就成了一元一次方程了)。 2)。讲解方程中ax2、bx、c各项的名称及a、b的系数名称。 3)。强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。 强化概念(课本P6) 1、说出下列一元二次方程的二次项系数、
5、一次项系数、常数项: (1)x2十3x十2=O (2)x23x十4=0; (3)3x2-5=0 (4)4x2十3x2=0; (5)3x25=0; (6)6x2x=0。 2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项: (1)6x2=3-7x; (3)3x(x-1)=2(x十2)4;(5)(3x十2)2=4(x-3)2 课堂小节 (1)本节课主要介绍了一类很重要的方程一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程); (2)要知道一元二次方程的一般形式ax2十bx十c=0(a0)并且注意一元二次方程的一般形式中“=”的左边最多三项
6、、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0; (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。 初三上册数学教学工作计划 篇二 【学习目标】 1、了解整式方程和一元二次方程的概念 。 2、 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。 3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。 【重点、难点】 重点:一元二次方程的概念和它的一般形式。 难点:对一元二次方程的一般形式的正确理解及其各项系数的确定 【学习过程】 一、 知识回
7、顾 1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。 2、指出下列方程那些是一元二次方程:那些是一元一次方程? (1) 3x十2=5x-3 (2) x2=4 (3) (x十3)(3xo4)=(x十2)2; (4) (x-1)(x-2)=x2十8; 以上是 一元二次方程的为: _ 以上是 一元一次
8、方程的为_ 二、 探究新知一 1、一元二次方程的一般形式是( ) 1)。提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b 0 就成了一元一次方程了) 2)。方程中ax2、bx、c各项的名称及a、b的系数名称各是什么? 3)。强调:一元二次方程的一般形式中=的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是=的右边必须整理成0. 探究新知(二) 1、说出下列一元二次方程的二次项系数、一次项系数、常数项: (1)x 2十3x十2=O _ (2)x 2-3x十4=0; _ (3)3x 2-5=0 _ (4)4x 2十3x-2=0; _
9、 (5)3x 2-5=0; _ (6)6x 2-x=0. _ 2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项: (1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4; (3) (3x十2) 2=4(x-3) 2 学以致用: 强化概念: 1、 说出下列一元二次方程的二次项系数、一次项系数、常数项: (1)x2十3x十2=O _ (2)x2-3x十4=0;_ (3) 3x2-5=0 _ (4)4x2十3x-2=0;_ (5)3x2-5=0_ (6)6x2-x=0_ 2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常
10、数项: (1)6x2=3-7x (2)3x(x-1)=2(x十2)-4 (3)(3x十2)2=4(x-3)2 知识总结: (1) 什么是一元二次方程?是一元二次方程满足哪几个条件? (2) 要知道一元二次方程的一般形式ax2十bx十c=0(a0)并且注意一元二次方程的一般形式中=的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是=的右边必须整理成( ); (3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。如:(3x十2) 2=4(x-3)_ 诊断检测题一: 1、一元二次方程的一般形式是_,其中_是二次项,_是一次项,_是常数项。 2
11、、方程(3x-7)(2x+4)=4化为一般形式为_,其中二次项系数为_,一次项系数为_. 3、方程mx2+5x+n=0一定是( )。 A.一元二次方程 B.一元一次方程 C.整式方程 D.关于x的一元二次方程 4、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( ) A.任意实数 B. m-1 C. m1 D. m0 5、方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2); 3X2+Y=2X那些是一元二次方程? 6、把下列方程化成一般形式,且指出其二次项,一次项和常数项 (1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x 诊断检测题
12、二: 1、方程 的二次项系数是 ,一次项系数是 ,常数项是 。 2、把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ; 3、一元二次方程 的一个根是3,则 ; 4、 是实数,且 ,则 的值是 。 5、关于 的方程 是一元二次方程,则 。 6、方程: 中一元二次程是 ( ) A. 和 B. 和 C. 和 D. 和 元二次方程的应用 篇三 第一课时 一、教学目标 1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。 2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。 3.通过列方程解应用问题,进一步体会代数中方程的思想
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 教案设计 一元 二次方程 应用 优秀
限制150内