《七年级上册数学教案6篇.docx》由会员分享,可在线阅读,更多相关《七年级上册数学教案6篇.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 七年级上册数学教案6篇 (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“”(正)号,例如,+3,+2,+0.5,+ ,就是3,2,0.5, ,一个数前面的“”、“”号叫做它的符号,这种符号叫做性质符号 (2)、中国古代用算筹(表示数的工具)进展计算,红色算筹表示正数,黑色算筹表示负数 (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数 (4) 、0可以表示没有,还
2、可以表示一个确定的量,如今日气温是0,是指一个确定的温度;海拔0表示海平面的平均高度。 用正负数表示具有相反意义的量。 (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在很多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。 (6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。 (7)、 你能再举一些用正负数表示数量的实际例子吗?
3、(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位上升的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量 初一数学上册教案 篇二 一、等式的概念和性质 1、等式的概念,用等号“=”来表示相等关系的式子,叫做等式。 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边。等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则。 2、等式的类型楷体五号 (1)恒等式:无论用什么数值代替等式中的字母,等式总能成立。如:数字算式 。 (2)条件等式:只能用某些数值代替等式中的字母,等式才能成立。方程
4、需要 才成立。 (3)冲突等式:无论用什么数值代替等式中的字母,等式都不能成立。如 , 。 留意:等式由代数式构成,但不是代数式。代数式没有等号。体五号 3、等式的性质五号 等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。若 ,则 ; 等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式。若 ,则 , 。 留意: (1)在对等式变形过程中,等式两边必需同时进展。即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边。 (2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必需一样。 (3)在等式变形中,以下两共性质也常
5、常用到: 等式具有对称性,即:假如 ,那么 。 等式具有传递性,即:假如 , ,那么 。黑体小四 二、方程的相关概念黑体小四 1、方程,含有未知数的等式叫作方程。 留意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母。二者缺一不行。楷体五号 2、方程的次和元 方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元。楷体五号 3、方程的已知数和未知数楷体五号 已知数:一般是详细的数值,如 中( 的系数是1,是已知数。但可以不说)。5和0是已知数,假如方程中的已知数需要用字母表示的话,习惯上有等表示。 未知数:是指要求的数,未知数
6、通常用 、 、 等字母表示。如:关于 、 的方程 中, 、 、 是已知数, 、 是未知数。楷体五号 4、方程的解 使方程左、右两边相等的未知数的值,叫做方程的解。楷体五号 5、解方程 求得方程的解的过程。 留意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程。 6、方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,假如左、右两边数值相等,那么这个数就是方程的解,否则就不是。黑体小四 三、一元一次方程的定义体小四 1、一元一次方程的概念 只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是
7、指未知数,“次”是指含未知数的项的最高次数。楷体五号 2、一元一次方程的形式楷体五号 标准形式: (其中 , , 是已知数)的形式叫一元一次方程的标准形式。 最简形式:方程 ( , , 为已知数)叫一元一次方程的最简形式。 留意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以推断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证。如方程 是一元一次方程。假如不变形,直接推断就出会现错误。 (2)方程 与方程 是不同的,方程 的解需要分类争论完成。黑体小四 四、一元一次方程的解法 1、解一元一次方程的一般步骤五号 (1)去分母:在方程的两边都乘以各分母的最小公倍数。
8、留意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号。 (2) 去括号:一般地,先去小括号,再去中括号,最终去大括号。 留意:不要漏乘括号里的项,不要弄错符号。 (3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边。 留意:移项要变号;不要丢项。 (4)合并同类项:把方程化成 的形式。 留意:字母和其指数不变。 (5)系数化为1:在方程的两边都除以未知数的系数 ,得到方程的解 。 留意:不要把分子、分母搞颠倒。体五号 2、解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等。 3、关于x的方程
9、ax b 解的状况 当a 0时,x 当a ,b 0时,方程有很多多个解 当a 0,b 0时,方程无解 练习1、等式的概念和性质 1、以下说法不正确的选项是 A.等式两边都加上一个数或一个等式,所得结果仍是等式。 B.等式两边都乘以一个数,所得结果仍是等式。 C.等式两边都除以一个数,所得结果仍是等式。 D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式。 2、依据等式的性质填空。 (1) ,则 ; (2) ,则 ; (3) ,则 ; (4) ,则 。 练习2、方程的相关概念 1、列各式中,哪些是等式?哪些是代数式,哪些是方程? ; ; ; ; ; ; ; ; 。 2、推
10、断题。 (1)全部的方程肯定是等式。 (2)全部的等式肯定是方程。 (3) 是方程。 (4) 不是方程。 (5) 不是等式,由于 与 不是相等关系。 (6) 是等式,也是方程。 (7)“某数的3倍与6的差”的含义是 ,它是一个代数式,而不是方程。 练习3、一元一次方程的定义 1、在以下方程中哪些是一元一次方程?哪些不是?说明理由: (1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2. 2、已知 是关于 的一元一次方程,求 的值。 3、已知方程 是关于x的一元一次方程,则m=_ 4、已知方程 是一元一次方程,则 ; 。 练习4、一元一次方程
11、的解与解法 1)一元一次方程的解 一)、依据方程解的详细数值来确定 1、若关于x的方程 的解是 ,则代数式 的值是_。 2、若 是方程 的一个解,则 。 3、某同学在解方程 ,把 处的数字看错了,解得 ,该同学把 看成了 。 二)、依据方程解的个数状况来确定楷体五号 1、关于 的方程 ,分别求 , 为何值时,原方程: (1)有唯一解;(2)有很多多解;(3)无解。 2、已知关于 的方程 有很多多个解,那么 , 。 3、已知方程 有两个不同的解,试求 的值。 三)、依据方程定解的状况来确定楷体五号 1、若 , 为定值,关于 的一元一次方程 ,无论 为何值时,它的解总是 ,求 和 的值。 2、当
12、取符合 的任意数时,式子 的值都是一个定值,其中 ,求 , 的值。 五号 四)、依据方程整数解的状况来确定楷体五号 1、已知 为整数,关于 的方程 的解为正整数,求 的值。 2、已知关于 的方程 有整数解,那么满意条件的全部整数 = 3、若方程 有一个正整数解,则 取的最小正数是多少?并求出相应方程的解。 号 五)、依据方程公共解的状况来确定 1、若 和 是关于 的同解方程,则 的值是 。 2、已知关于 的方程 ,和方程 有一样的解,求这个一样的解。 3、已知关于 的方程 仅有正整数解,并且和关于 的方程 是同解方程。若 , ,求出这个方程可能的解。 2)一元一次方程的解法 一)、根本类型的一
13、元一次方程的解法 1、解方程:(1) (2) - =1- (3) 二)、分式中含有小数的一元一次方程的解法楷体五号 1、解方程:(1) (2) (3) (4) 三)、含有多层括号的一元一次方程的解法体五号 1、解方程:(1) (2) (3) 四)、一元一次方程的技巧解法 1、解方程:(1) (2) (3) (4) 一、填空题。(每题3分,共24分) 1、已知4x2n-5+5=0是关于x的一元一次方程,则n=_. 2、若x=-1是方程2x-3a=7的解,则a=_. 3、当x=_时,代数式 x-1和 的值互为相反数。 4、已知x的 与x的3倍的和比x的2倍少6,列出方程为_. 5、在方程4x+3y
14、=1中,用x的代数式表示y,则y=_. 6、某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为_元。 7、已知三个连续的偶数的和为60,则这三个数是_. 8、一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需_天完成。 二、选择题。(每题3分,共30分) 9、方程2m+x=1和3x-1=2x+1有一样的解,则m的值为。 A.0 B.1 C.-2 D.- 10、方程3x=18的解的状况是。 A.有一个解是6 B.有两个解,是6 C.无解 D.有很多个解 11、若方程2ax-3=5x+b无解,则a,b应满意。 A.a ,b3 B.a= ,b=-3 C.a
15、 ,b=-3 D.a= ,b-3 12、解方程 时,把分母化为整数,得。 A、 B、 C、 D、 13、在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于。 A.10分 B.15分 C.20分 D.30分 14、某商场在统计今年第一季度的销售额时发觉,二月份比一月份增加了10%,三月份比二月份削减了10%,则三月份的销售额比一月份的销售额。 A.增加10% B.削减10% C.不增也不减 D.削减1% 15、在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米。 A.1 B.
16、5 C.3 D.4 16、已知甲组有28人,乙组有20人,则以下调配方法中,能使一组人数为另一组人数的一半的是。 A.从甲组调12人去乙组 B.从乙组调4人去甲组 C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组 17、足球竞赛的规章为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场竞赛,负了5场,共得19分,那么这个队胜了场。 A.3 B.4 C.5 D.6 18、如下图,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍旧平衡? A.3个 B.4个 C.5个 D.6个 三、解答题。(19,20题每题6分,21,22题每题7分,23
17、,24题每题10分,共46分) 19、解方程:2(x-3)+3(2x-1)=5(x+3) 20、解方程: 21、如下图,在一块展现牌上整齐地贴着很多资料卡片,这些卡片的大小一样,卡片之间露出了三块正方形的空白,在图中用斜线标明。已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片。 22、一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字挨次颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。 23、据了解,火车票价按“ ”的方法来确定。已知A站至H站总里程数为1500千米,全程参考价为180元。下表是沿途各站至H站的里程
18、数: 车站名 A B C D E F G H 各站至H站 里程数(米) 1500 1130 910 622 402 219 72 0 例如:要确定从B站至E站火车票价,其票价为 =87.3687(元)。 (1)求A站至F站的火车票价(结果准确到1元)。 (2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,立刻说下一站就到了。请问王大妈是在哪一站下的车(要求写出解答过程)。 24、某公园的门票价格规定如下表: 购票人数 150人 51100人 100人以上 票 价 5元 4.5元 4元 某校初一甲、乙两班共103人(其中甲班人数多于
19、乙班人数)去游该公园,假如两班都以班为单位分别购票,则一共需付486元。 (1)假如两班联合起来,作为一个团体购票,则可以节省多少钱? (2)两班各有多少名学生?(提示:此题应分状况争论) 学问与技能 篇三 能推断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量 课时划分 篇四 1、1 正数和负数 2课时 1、2 有理数 5课时 1、3 有理数的加减法 4课时 1、4 有理数的乘除法 5课时 1、5 有理数的乘方 4课时 第一章有理数 2课时 1、1正数和负数 教学过程 篇五 四、课堂引入 我们知道,数是人们在实际生活和生活需要中产生,并不断扩大的、人们由记数、排序、产生数1,2,3,;为了表示“没有物体”、“空位”引进了数“0”,测量和安排有时不能得到整数的结果,为此产生了分数和小数、 在生活、生产、科研中常常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里消失的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,削减2.7%、 重、难点与关键 篇六 1、重点:正确理解有理数、相反数、肯定值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和肯定值 2、难点:精确理解负数、肯定值等概念 3、关键:正确理解负数的意义和肯定值的意义
限制150内