北师大九年级上11你能证明它们吗(1)课件课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《北师大九年级上11你能证明它们吗(1)课件课件.ppt》由会员分享,可在线阅读,更多相关《北师大九年级上11你能证明它们吗(1)课件课件.ppt(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北北 师师 大大 八八 年年 级级 数数 学学 (上上 )1、你能证明它们吗、你能证明它们吗(1)北北北北 师师师师 大大大大 九九九九 年年年年 级级级级 数数数数 学学学学 (上上上上 )8/13/202311.1.两直线被第三条直线所截两直线被第三条直线所截两直线被第三条直线所截两直线被第三条直线所截,如果同位角相等如果同位角相等如果同位角相等如果同位角相等,那么这两条直线平行那么这两条直线平行那么这两条直线平行那么这两条直线平行;2.2.两条平行线被第三条直线所截两条平行线被第三条直线所截两条平行线被第三条直线所截两条平行线被第三条直线所截,同位角相等同位角相等同位角相等同位角相等;3
2、.3.两边夹角对应相等的两个三角形全等两边夹角对应相等的两个三角形全等两边夹角对应相等的两个三角形全等两边夹角对应相等的两个三角形全等;4.4.两角及其夹边对应相等的两个三角形全等两角及其夹边对应相等的两个三角形全等两角及其夹边对应相等的两个三角形全等两角及其夹边对应相等的两个三角形全等;5.5.三边对应相等的两个三角形全等三边对应相等的两个三角形全等三边对应相等的两个三角形全等三边对应相等的两个三角形全等;6.6.全等三角形的对应边相等全等三角形的对应边相等全等三角形的对应边相等全等三角形的对应边相等,对应角相等对应角相等对应角相等对应角相等.公理、定理公理、定理 与与 证明证明【公理公理公
3、理公理】【证明证明证明证明】【定理定理定理定理】公认的真命题称为公理公认的真命题称为公理公认的真命题称为公理公认的真命题称为公理(axiomaxiom).).经过证明的真命题称为定理经过证明的真命题称为定理经过证明的真命题称为定理经过证明的真命题称为定理(theorem).(theorem).(theorem).(theorem).除了公理外除了公理外除了公理外除了公理外,其它真命题的正确性都通过推理的方法证实其它真命题的正确性都通过推理的方法证实其它真命题的正确性都通过推理的方法证实其它真命题的正确性都通过推理的方法证实.推理的过程称为证明推理的过程称为证明推理的过程称为证明推理的过程称为证
4、明.本套教材选用如下命题作为公理:8/13/20232几何的三种语言、平行线的判定几何的三种语言、平行线的判定abc21abc12abc12公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论(推论推论推论推论),),),),以后可以直接运用以后可以直接运用以后可以直接运用以后可以直接运用.【公理公理公理公理】同位角相等同位角相等同位角相等同位角相等,两直线平行两直线平行两直线平行两直线平行.1=1=2,2,a ab b.【判定定理判定定理判定定理判定定理 1 1】内错角相等内错角相等内错角相等内错角相等,两直
5、线平行两直线平行两直线平行两直线平行.1=1=2,2,a ab b.【判定定理判定定理判定定理判定定理 2 2】同旁内角互补同旁内角互补同旁内角互补同旁内角互补,两直线平行两直线平行两直线平行两直线平行.1+1+2=1802=180 ,a ab b.8/13/20233几何的三种语言、平行线的性质几何的三种语言、平行线的性质【公理公理公理公理】两直线平行两直线平行两直线平行两直线平行,同位角相等同位角相等同位角相等同位角相等.abc21abc12abc12 a ab b,1=1=2.2.a ab b,1=1=2.2.【性质定理性质定理性质定理性质定理 1 1】两直线平行两直线平行两直线平行两直
6、线平行,内错角相等内错角相等内错角相等内错角相等.【性质定理性质定理性质定理性质定理 2 2】两直线平行两直线平行两直线平行两直线平行,同旁内角互补同旁内角互补同旁内角互补同旁内角互补.a ab b,1+1+2=1802=180 .公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论(推论推论推论推论),),),),以后可以直接运用以后可以直接运用以后可以直接运用以后可以直接运用.8/13/20234几何的三种语言、几何的三种语言、三角形内角和定理三角形内角和定理ABCABC中中中中,A+A+B+B+C=C=1
7、80180o o.A+A+B+B+C=C=180180o o 的几种变形的几种变形的几种变形的几种变形:w w A=A=180180o o (B+B+C).C).w w B=B=180180o o (A+A+C).C).w w C=C=180180o o (A+A+B).B).w w A+A+B=B=180180o o C.C.w w B+B+C=C=180180o o A.A.w w A+A+C=C=180180o o B.B.A AB BC C【三角形内角和定理三角形内角和定理三角形内角和定理三角形内角和定理】三角形三个内角的和等于三角形三个内角的和等于三角形三个内角的和等于三角形三个内角
8、的和等于180180o o.公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论(推论推论推论推论),),),),以后可以直接运用以后可以直接运用以后可以直接运用以后可以直接运用.8/13/20235几何的三种语言、关注三角形的外角几何的三种语言、关注三角形的外角 ABCABC中中中中:1.1.1=1=2+2+3;3;2.2.112,2,113.3.A AB BC CD D1 12 23 34 4【三角形内角和定理的推论三角形内角和定理的推论三角形内角和定理的推论三角形内角和定理的推论】【推论推论推论推论1 1
9、】三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角.直角三角形的两锐角互余直角三角形的两锐角互余直角三角形的两锐角互余直角三角形的两锐角互余.【推论推论推论推论2 2】【推论推论推论推论3 3】公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结论公理、定理及由它们直接推出来的结
10、论公理、定理及由它们直接推出来的结论(推论推论推论推论),),),),以后可以直接运用以后可以直接运用以后可以直接运用以后可以直接运用.8/13/20236有关三角形全等的一些结论有关三角形全等的一些结论【公理公理公理公理】三边对应相等的两个三角形全等三边对应相等的两个三角形全等三边对应相等的两个三角形全等三边对应相等的两个三角形全等 .(SSS)(SSS)两边及其夹角对应相等的两个三角形全等两边及其夹角对应相等的两个三角形全等两边及其夹角对应相等的两个三角形全等两边及其夹角对应相等的两个三角形全等 .两角及其夹边对应相等的两个三角形全等两角及其夹边对应相等的两个三角形全等两角及其夹边对应相等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 九年级 11 证明 它们 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内