人教版数学九年级上册课件第二十五章概率初步25.2用列举法求概率教学资料.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教版数学九年级上册课件第二十五章概率初步25.2用列举法求概率教学资料.pptx》由会员分享,可在线阅读,更多相关《人教版数学九年级上册课件第二十五章概率初步25.2用列举法求概率教学资料.pptx(84页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初初中数学教学同步课件前前言言言言读读的方法的方法同学们往往不同学们往往不善善善善于于读读数学书数学书,在在读读的过程中的过程中,易易沿沿沿沿用用死死死死记硬记硬背背背背的方的方法。那么如何有法。那么如何有效效效效地地读读数学书呢数学书呢?平时应做到平时应做到:一是一是粗粗粗粗读读。先。先粗略粗略粗略粗略浏览浏览教材的教材的枝枝枝枝干干,并能并能粗略粗略粗略粗略掌握本掌握本章章章章节知识的节知识的概概貌貌貌貌,重、重、难难点;点;二是细二是细读读。对重要的概念、性质、。对重要的概念、性质、判判判判定、公式、法则、思想方定、公式、法则、思想方法等反复法等反复阅读阅读、体会、思考、体会、思考,领会
2、其领会其实实质及其因果关系质及其因果关系,并在不理并在不理解的地方作上记解的地方作上记号号号号(以便求教以便求教);三是三是研研研研读读。要。要研研研研究知识究知识间间的内在的内在联联系系,研研研研讨讨书本知识安排意图书本知识安排意图,并并对知识进行分析、归纳、总结对知识进行分析、归纳、总结,以形成知识体系以形成知识体系,完完善善善善认认知结构。知结构。读读书书,先求先求读读懂懂懂懂,再求再求读读透透,使使使使得自学能力和得自学能力和实际实际应用能力得到应用能力得到很很很很好的好的训训练。练。“听听听听”是直接用是直接用感官感官感官感官去接受知识去接受知识,而而初初初初中同学往往对课程中同学往
3、往对课程增增增增多、多、课堂学习课堂学习量量量量加大不适应加大不适应,顾顾此此失彼失彼失彼失彼,精精精精力分力分散散散散,使听使听使听使听课课效效效效果下果下降降降降。因此应在因此应在听听听听课程时注意做到课程时注意做到:(1)(1)听听听听每节课的学习要求;每节课的学习要求;(2)(2)听听听听知识的知识的引引引引入和形成过程;入和形成过程;(3)(3)听懂听懂听懂听懂教学中的重、教学中的重、难难点点(尤尤尤尤其是其是预预习中不理解的或有习中不理解的或有疑疑疑疑问的问的知识点知识点);(4)(4)听听听听例题关键部分的提示及应用的数学思想方法;例题关键部分的提示及应用的数学思想方法;(5)(
4、5)做好课后小结。做好课后小结。前前言言言言听听听听的方法的方法“思思”指同学的思指同学的思维维。数学是思。数学是思维维的体的体操操操操,学习学习离离离离不开思不开思维维,数学数学更更离离离离不开思不开思维维活动活动,善善善善于思考则学得活于思考则学得活,效效效效率率高高高高;不;不善善善善于思考则学于思考则学得得死死死死,效效效效果差。可果差。可见见,科科科科学的思学的思维维方法是掌握好知识的前提。七年方法是掌握好知识的前提。七年级学生的思级学生的思维维往往还往往还停留停留停留停留在小学的思在小学的思维维中中,思思维维狭窄狭窄狭窄狭窄。因此在学。因此在学习中要做到习中要做到:(1)(1)敢敢
5、敢敢于思考、于思考、勤勤勤勤于思考、随于思考、随读读随思、随随思、随听听听听随思。在看书、随思。在看书、听听听听讲、讲、练习时要多思考;练习时要多思考;(2)(2)善善善善于思考。会抓于思考。会抓住住住住问题的关键、知识的重点进行思考;问题的关键、知识的重点进行思考;(3)(3)反思。要反思。要善善善善于从回于从回顾顾解题解题策略策略策略策略、方法的、方法的优优劣劣劣劣进行分析、归纳、进行分析、归纳、总结。总结。前前言言言言思考的方法思考的方法孔孔孔孔子子曰曰曰曰:“:“敏敏敏敏而好学而好学,不不耻耻耻耻不问。不问。”爱因爱因斯坦斯坦斯坦斯坦说过说过:“:“提出问题比解决问提出问题比解决问题更
6、重要。题更重要。”问能解问能解惑惑惑惑,问能知新问能知新,任何学任何学科科科科的学习无不是从问题开始的学习无不是从问题开始的。因此的。因此,同学在平时学习中应掌握问问题的一些方法同学在平时学习中应掌握问问题的一些方法,主要有主要有:(1)(1)追追追追问法。即在某个问题得到回答后问法。即在某个问题得到回答后,顺其思路对问题顺其思路对问题紧紧追追追追不不舍舍舍舍,刨刨刨刨根根到到底底底底继续发问继续发问;(2)(2)反问法。根据教材和教师所讲的内容反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来从相反的方向把问题提出来;(3)(3)类比提问法。据某些相类比提问法。据某些相似似似似的概念
7、、定理、性质等的相的概念、定理、性质等的相互互互互关系关系,通过通过比较和类推提出问题比较和类推提出问题;(4)(4)联联系系实际实际提问法。结合某些知识点提问法。结合某些知识点,通过对通过对实际实际生活中一些现象的生活中一些现象的观察和分析提出问题。观察和分析提出问题。此外此外,在提问时不仅要问其然在提问时不仅要问其然,还要问其所以然。还要问其所以然。前前言言言言问的方法问的方法很很很很大一部分学生大一部分学生认认为数学为数学没没没没有有笔笔笔笔记可记记可记,有记有记笔笔笔笔记的学生也是记得不够合记的学生也是记得不够合理。通常是教师在黑理。通常是教师在黑板板板板上所写的都记下来上所写的都记下
8、来,用用“记记”代代替替替替“听听听听”和和“思思”。有的。有的笔笔笔笔记记虽虽然记得然记得很很很很全全,但收效甚但收效甚但收效甚但收效甚微。因此微。因此,学生作学生作笔笔笔笔记时应做到以记时应做到以下几点下几点:(1)(1)在在“听听听听”,“”,“思思”中有选择地记录;中有选择地记录;(2)(2)记学习内容的要点记学习内容的要点,记自记自己己己己有有疑疑疑疑问的问的疑疑疑疑点点,记书中记书中没没没没有的知识及教师有的知识及教师补补充的知识点;充的知识点;(3)(3)记解题思路、思想方法;记解题思路、思想方法;(4)(4)记课堂小结。明确记课堂小结。明确笔笔笔笔记是为记是为补补充充“听听听听
9、”“”“思思”的不足的不足,是为最后复习是为最后复习准准准准备备的的,好的好的笔笔笔笔记能记能使使使使复习复习达达达达到事到事倍功半倍功半倍功半倍功半的的效效效效果。果。正确的学习正确的学习态态度和度和科科科科学的学习方法是学好数学的两大基石。这两大基石学的学习方法是学好数学的两大基石。这两大基石的形成又的形成又离离离离不开平时的数学学习不开平时的数学学习实实践践践践。所以。所以暑期期暑期期暑期期暑期期间间每天给自每天给自己己己己一些时一些时间间学习数学是学习数学是很很很很有有必必必必要的。要的。前前言言言言记记笔笔笔笔记的方法记的方法2 25 5.2 2 用列举法求概率用列举法求概率/25.
10、2 25.2 用列举法求概率用列举法求概率第一课时第二课时人教版人教版 数学数学 九九年级年级 上册上册2 25 5.2 2 用列举法求概率用列举法求概率/第一课时直接列举法和列表法直接列举法和列表法求概率求概率返回2 25 5.2 2 用列举法求概率用列举法求概率/小颖为小颖为一节活动课一节活动课设计了一个设计了一个“配紫色配紫色”游戏:游戏:下面是两个可以自由转动的转盘,每个转盘被分成相下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形游戏规则是:游戏者同时转动两个转等的几个扇形游戏规则是:游戏者同时转动两个转盘,如果转盘盘,如果转盘A转出了红色,转盘转出了红色,转盘B转转出了蓝色
11、,那么出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。问:他就赢了,因为红色和蓝色在一起配成了紫色。问:游戏者获胜的概率是多少?游戏者获胜的概率是多少?导入新知导入新知2 25 5.2 2 用列举法求概率用列举法求概率/老师向空中抛掷两枚同样的一元硬币,如果落地后老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢一正一反,老师赢;如果落地后两面一样,你们赢.请问请问,你们觉得这个游戏公平吗?,你们觉得这个游戏公平吗?【做游戏】导入新知导入新知 上上边边的的问问题题有有几几种种可可能能呢呢?怎怎样样才才能能不不重重不不漏地列举所有可能出现的结果呢?漏
12、地列举所有可能出现的结果呢?2 25 5.2 2 用列举法求概率用列举法求概率/3.知道如何利用知道如何利用“列表法列表法”求随机事件的概求随机事件的概率率.1.会用会用直接列举法直接列举法和和列表法列表法列举所有可能出列举所有可能出现的结果现的结果.2.会用会用列表法列表法求出事件的概率求出事件的概率.素养目标素养目标2 25 5.2 2 用列举法求概率用列举法求概率/同时掷两枚硬币,试求下列事件的概率:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;一枚硬币正面朝上,一枚硬币反面朝上;探究新知探究新知 用直接列举法求概率用直接
13、列举法求概率知识点 12 25 5.2 2 用列举法求概率用列举法求概率/“掷两枚硬币掷两枚硬币”所有结果如下:所有结果如下:正正正反反正反反探究新知探究新知2 25 5.2 2 用列举法求概率用列举法求概率/解:解:(1 1)两枚硬币两面一样包括)两枚硬币两面一样包括两面都是正面两面都是正面、两面都是反面两面都是反面,共两种情形,其概率为,共两种情形,其概率为(2 2)一枚硬币正面朝上,一枚硬币反面朝上)一枚硬币正面朝上,一枚硬币反面朝上,共有共有反正反正、正反正反两种情形,其概率为两种情形,其概率为探究新知探究新知2 25 5.2 2 用列举法求概率用列举法求概率/上述这种列举法我们称为上
14、述这种列举法我们称为直接列举法直接列举法,即把,即把事件可能出现的结果一一列出事件可能出现的结果一一列出.【注意】【注意】直接列举法比较适合用于最多涉及两个试验因素或分两步进行的试验,且事件总结果的种数比较少的等可能性事件.探究新知探究新知2 25 5.2 2 用列举法求概率用列举法求概率/【想一想想一想】“同时掷两枚硬币同时掷两枚硬币”与与“先后两次掷一先后两次掷一枚硬币枚硬币”,这两种试验的所有可能结果一样吗?,这两种试验的所有可能结果一样吗?开始第一掷第二掷所有可能出现的结果(正、正)(正、反)(反、正)(反、反)结论:结论:一样一样.探究新知探究新知2 25 5.2 2 用列举法求概率
15、用列举法求概率/探究新知探究新知 随机事件随机事件“同时同时”与与“先后先后”的关系的关系:“两个相同的随机事件同时发生两个相同的随机事件同时发生”与与 “一个随机一个随机事件先后两次发生事件先后两次发生”的结果是一样的的结果是一样的.归纳总结归纳总结2 25 5.2 2 用列举法求概率用列举法求概率/同时掷两枚硬币,试求下列事件的概率:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;一枚硬币正面朝上,一枚硬币反面朝上;探究新知探究新知 用列表法求概率用列表法求概率知识点 2还有别的方法求上述还有别的方法求上述事件的概率吗?事件的
16、概率吗?2 25 5.2 2 用列举法求概率用列举法求概率/第第1 1枚硬币枚硬币第第2枚枚硬硬币币还可以用列表法求概率探究新知探究新知反反正正正正反反反反反正正正正正正反反反正2 25 5.2 2 用列举法求概率用列举法求概率/【思考】【思考】怎样列表格呢?怎样列表格呢?一个因素所包含的可能情况另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n探究新知探究新知列表法中表格构造特点列表法中表格构造特点:说明说明如果第一个如果第一个因素包含因素包含2种种情况;第二情况;第二个因素包含个因素包含3种情况;那种情况;那么所有情况么所有情况n=23=6.2 25 5.2 2 用列举法求概率用
17、列举法求概率/例例1 同时掷两个质地均匀的骰子,计算下列事件同时掷两个质地均匀的骰子,计算下列事件的概率:的概率:(1)两个骰子的点数相同)两个骰子的点数相同.(2)两个骰子的点数之和)两个骰子的点数之和 是是9.(3)至少有一个骰子的点数)至少有一个骰子的点数 为为2.第一个第二个利用列表法解答掷骰子问题利用列表法解答掷骰子问题123456123456素素养养考考点点 1探究新知探究新知2 25 5.2 2 用列举法求概率用列举法求概率/123456123456第一个第二个(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)
18、(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)分析:分析:首先要弄清楚一共有多少个可能结果。第首先要弄清楚一共有多少个可能结果。第1枚骰子可枚骰子可能掷出能掷出1、2、6中的每一种情况,第中的每一种情况,第2枚骰子也可能掷枚骰子也可能掷出出1,2,6中的每一种情况中的每一种情况.可以用可以用“列表法列表法”列出所有列出所有可能的结果如下:可能的结果如下:探究新知探究新知2 25 5.2 2 用列举法求概
19、率用列举法求概率/解解:由列表得,同时掷两个骰子,可能出现的结果有由列表得,同时掷两个骰子,可能出现的结果有36个,个,它们出现的可能性它们出现的可能性相等相等.(1)满足两个骰子的点数相同(记为事件)满足两个骰子的点数相同(记为事件A)的结果有)的结果有6个,个,则则P(A)=(2)满足两个骰子的点数之和是)满足两个骰子的点数之和是9(记为事件(记为事件B)的结果有)的结果有4个,则个,则P(B)=(3)满足至少有一个骰子的点数为)满足至少有一个骰子的点数为2(记为事件(记为事件C)的结果有)的结果有11个,则个,则P(C)=探究新知探究新知2 25 5.2 2 用列举法求概率用列举法求概率
20、/探究新知探究新知 当一次试验要涉及当一次试验要涉及两个因素两个因素(例如掷两个(例如掷两个骰子)并且可能出现的骰子)并且可能出现的结果数目较多结果数目较多时,为不时,为不重不漏地列出所有可能结果,通常采用重不漏地列出所有可能结果,通常采用列表法列表法.归纳总结归纳总结2 25 5.2 2 用列举法求概率用列举法求概率/1.同时抛掷同时抛掷2枚均匀的骰子一次,骰子各面上的点数枚均匀的骰子一次,骰子各面上的点数分别是分别是1、2、36.试分别计算如下各随机事件的试分别计算如下各随机事件的概率概率.(1)抛出的点数之和等于抛出的点数之和等于8;(2)抛出的点数之和等于抛出的点数之和等于12.分析:
21、分析:首先要弄清楚一共有多少个可能结果首先要弄清楚一共有多少个可能结果.第第1枚骰子可能枚骰子可能掷出掷出1、2、6中的每一种情况,第中的每一种情况,第2枚骰子也可能掷出枚骰子也可能掷出1、2、6中的每一种情况中的每一种情况.可以用可以用“列表法列表法”列出所有可能的列出所有可能的结果结果.巩固练习巩固练习2 25 5.2 2 用列举法求概率用列举法求概率/第第2枚枚 骰子骰子第第1枚枚骰子骰子结结 果果123456123456(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(3,1)(4,1)(5,1)(6,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,2
22、)(3,3)(3,4)(3,5)(3,6)(4,2)(5,2)(6,2)(4,3)(5,3)(6,3)(4,4)(5,4)(6,4)(4,5)(5,5)(6,5)(4,6)(5,6)(6,6)巩固练习巩固练习2 25 5.2 2 用列举法求概率用列举法求概率/解解:从上表可以看出,同时抛掷两枚骰子一次,所有可从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有能出现的结果有36种种.由于骰子是均匀的,所以每个结果出现由于骰子是均匀的,所以每个结果出现的可能性相等的可能性相等.(1)抛出点数之和等于抛出点数之和等于8的结果的结果(2,6),(3,5),(4,4),(5,3)和和(6,2)这
23、这5种,所以抛出的点数之和等于种,所以抛出的点数之和等于8的这个事件发生的概率为的这个事件发生的概率为 ;(2)抛出点数之和等于抛出点数之和等于12的结果的结果仅有仅有(6,6)这这1种种,所以抛,所以抛出的点数之和等于出的点数之和等于12的这个事件发生的概率为的这个事件发生的概率为 .巩固练习巩固练习2 25 5.2 2 用列举法求概率用列举法求概率/例例2 一只不透明的袋子中装有一只不透明的袋子中装有1个白球和个白球和2个红球,个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,球,记录下颜色后放回袋中并搅匀,再从
24、中任意摸出一个球,两次都摸再从中任意摸出一个球,两次都摸出红球的概率是多少?出红球的概率是多少?1 2利用列表法计算摸球游戏的概率利用列表法计算摸球游戏的概率素素养养考考点点 2探究新知探究新知2 25 5.2 2 用列举法求概率用列举法求概率/结果第一次第二次解解:利用表格列出所有可能的结果:利用表格列出所有可能的结果:白红1红2白红1红2(白,白)(白,红1)(白,红2)(红1,白)(红1,红1)(红1,红2)(红2,白)(红2,红1)(红2,红2)探究新知探究新知2 25 5.2 2 用列举法求概率用列举法求概率/拓展延伸:拓展延伸:一只不透明的袋子中装有一只不透明的袋子中装有1 1个白
25、球和个白球和2 2个红球,个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后录下颜色后不再放回袋中不再放回袋中,再从中任意摸出一个球,两次,再从中任意摸出一个球,两次都摸出红球的概率是多少?都摸出红球的概率是多少?解:解:利用表格列出所有可能的结果:利用表格列出所有可能的结果:白红1红2白红1红2(白,红1)(白,红2)(红1,白)(红1,红2)(红2,白)(红2,红1)结果第一次第二次探究新知探究新知2 25 5.2 2 用列举法求概率用列举法求概率/通过通过例例2及拓展延伸的讲解,及拓展延伸的讲解,放回与不放回放回与不放回
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 数学 九年级 上册 课件 第二 十五 概率 初步 25.2 列举 教学 资料
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内