中考数学教案大全七篇.docx
《中考数学教案大全七篇.docx》由会员分享,可在线阅读,更多相关《中考数学教案大全七篇.docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 中考数学教案大全七篇 教学目标: 1、了解公式的意义,使学生能用公式解决简洁的实际问题; 2、初步培育学生观看、分析及概括的力量; 3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。 教学建议: 一、教学重点、难点 重点:通过详细例子了解公式、应用公式。 难点:从实际问题中发觉数量之间的关系并抽象为详细的公式,要留意从中反响出来的归纳的思想方法。 二、重点、难点分析 人们从一些实际问题中抽象出很多常用的、根本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清晰公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知
2、数求出所需的未知数。详细计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过试验,从得到的反映数量关系的一些数据(如数据表)动身,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们熟悉和改造世界带来许多便利。 三、学问构造 本节一开头首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观看归纳推导公式解决一些实际问题。整节内容渗透了由一般到特别、再由特别到一般的辨证思想。 四、教法建议 1、对于给定的可以直接应用的公式,首先在给出详细例子的前提下,教师创设情境,引导学生清楚地熟悉公式中每一个字母、数字
3、的意义,以及这些数量之间的对应关系,在详细例子的根底上,使学生参加挖倔其中蕴涵的思想,明确公式的应用具有普遍性,到达对公式的敏捷应用。 2、在教学过程中,应使学生熟悉有时问题的解决并没有现成的公式可套,这就需要学生自己尝摸索求数量之间的关系,在已有公式的根底上,通过分析和详细运算推导新公式。 3、在解决实际问题时,学生应观看哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再依据公式进一步地解决问题。这种从特别到一般、再从一般到特别熟悉过程,有助于提高学生分析问题、解决问题的力量。 教学设计例如: 一、教学目标 (一)学问教学点 1、使学生能利用公式解决简洁的实际问
4、题。 2、使学生理解公式与代数式的关系。 (二)力量训练点 1、利用数学公式解决实际问题的力量。 2、利用已知的公式推导新公式的力量。 (三)德育渗透点 数学来源于生产实践,又反过来效劳于生产实践。 (四)美育渗透点 数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了颜色斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。 二、学法引导 1、数学方法:引导发觉法,以复习提问小学里学过的公式为根底、突破难点。 2、学生学法:观看分析推导计算。 三、重点、难点、疑点及解决方法 1、重点:利用旧公式推导出新的图形的计算公式。 2、难点:同重点。 3、疑点:把要求的图形如何分解成已经熟识
5、的图形的和或差。 四、课时安排 1课时 五、教具学具预备 投影仪,自制胶片。 六、师生互动活动设计 教者投影显示推导梯形面积计算公式的图形,学生思索,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。 七、教学步骤 (一)创设情景,复习引入 师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有许多应用,公式就是其中之一,我们在小学里学过很多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开头就参加课堂教学,使学生在后面利用公式计算感到不生疏。 在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,讨论如何运用公式解决实际问题。 板书
6、:公式 师:小学里学过哪些面积公式? 板书:S=ah (出示投影1)。解释三角形,梯形面积公式 【教法说明】让学生感知用割补法求图形的面积。 中考数学教案大全精选篇2 一、内容简介 本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。 关键信息: 1、以教材作为动身点,依据数学课程标准,引导学生体会、参加科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发觉问题,对可能的答案做出假设与猜测,并通过屡次的检验,得出正确的结论。学生通过收集和处理信息、表达与沟通等活动,获得学问、技能、方法、态度特殊是创新精神和实践
7、力量等方面的进展。 2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。 二、学习者分析: 1、在学习本课之前应具备的根本学问和技能: 同类项的定义。 合并同类项法则 多项式乘以多项式法则。 2、学习者对马上学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。 三、教学/学习目标及其对应的课程标准: (一)教学目标: 1、经受探究完全平方公式的过程,进一步进展符号感和推力力量。 2、会推导完全平方公式,并能运用公式进展简洁的计算。 (二)学问与技能:经受从详细
8、情境中抽象出符号的过程,熟悉有理数、实数、代数式、防城、不等式、函数;把握必要的运算,(包括估算)技能;探究详细问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进展描述。 (四)解决问题:能结合详细情景发觉并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的阅历。 (五)情感与态度:敢于面对数学活动中的困难,并有独立克制困难和运用学问解决问题的胜利体验,有学好数学的自信念;并敬重与理解他人的见解;能从沟通中获益。 四、教育理念和教学方式: 1、教师是学生学习的组织者、促进者、合:学生是学习的仆
9、人,在教师指导下主动的、富有共性的学习,用自己的身体去亲自经受,用自己的心灵去亲自感悟。 教学是师生交往、积极互动、共同进展的过程。当学生迷路的时候,教师不轻易告知方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓舞他不断向上攀登。 2、采纳“问题情景探究沟通得出结论强化训练”的模式绽开教学。 3、教学评价方式: (1)通过课堂观看,关注学生在观看、总结、训练等活动中的主动参加程度与合作沟通意识,准时给与鼓舞、强化、指导和矫正。 (2)通过推断和举例,给学生更多时机,在自然放松的状态下,提醒思维过程和反应学问与技能的把握状况,使教师可以准时诊
10、断学情,调查教学。 (3)通过课后访谈和作业分析,准时查漏补缺,确保到达预期的教学效果。 五、课后反思 本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特别形式下的一种简便运算。学生需要娴熟把握公式两种形式的使用方法,以提高运算速度。授课过程中,应注意让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中简单消失的问题和特殊留意的细节。然后再通过逐层深入的练习,稳固完全平方公式两种形式的应用。为完全平方公式其次节课的实际应用和提高应用做好充分的预备 中考数学教案大全精选篇3 教材分析: 一元二次方程根与系数的关系的学问内容主要是以前一单元中的求
11、根公式为根底的。教材通过一元二次方程a_2+b_+c=0(a0)的根_1、_2得出一元二次方程根与系数的关系,以及以数_1、_2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的学问。 学情分析: 1.学生已学习用求根公式法解一元二次方程。 2.本课的教学对象是九年级学生,学生对事物的熟悉多是直观、形象的,他们所留意的多是事物外部的、直接的、详细形象的特征。 3.在教学初始,出示一些学生所熟识和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的根底上把握一元二次方程根与系数的关系。 教学目标: 1、学问目标:要求学生在理解
12、的根底上把握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。 2、力量目标:通过韦达定理的教学过程,使学生经受观看、试验、猜测、证明等数学活动过程,进展推理力量,能有条理地、清楚地阐述自己的观点,进一步培育学生的创新意识和创新精神。 3、情感目标:通过情境教学过程,激发学生的求知欲望,培育学生积极学习数学的态度。体验数学活动中布满着探究与制造,体验数学活动中的胜利感,建立自信念。 教学重难点: 1、重点:一元二次方程根与系数的关系。 2、难点:让学生从详细方程的根发觉一元二次方程根与系数之间的关
13、系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比拟抽象,学生真正把握有肯定的难度,是教学的难点。 板书设计: 一元二次方程根与系数的关系假如a_+b_+c=0(a0)的两根是_1,_2,那么_1+_2=,_1_2=。 问题6.在方程a_+b_+c=0(a0)中,a、b、c的作用吗?二次项系数a是否为零,打算着方程是否为二次方程;当a0时,b=0,a、c异号,方程两根互为相反数;当a0时,=b-4ac可判定根的状况;当a0,b-4ac0时,_1+_2=,_1_2=。当a0,c=0时,方程必有一根为0。 学生学习活动评价设计: 本节课充分让学生分析、观看、
14、提高了学生的归纳力量及推理论证的力量。 教学反思: 1.一元二次方程根与系数的关系的推导是在求根公式的根底上进展。它深化了两根的和与积同系数之间的关系,是我们今后连续讨论一元二次方程根的状况的主要工具,必需熟记,为进一步使用打下根底。 2.以一元二次方程根与系数的关系的探究与推导,向学生展现熟悉事物的一般规律,提倡积极思维,勇于探究的精神,借此熬炼学生分析、观看、归纳的力量及推理论证的力量。 3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式消失,考察的频率较高,也常与几何、二次函数等问题结合考察,是考试的热点,它是方程理论的重要组成局部。 4.使学生体会解题方法的多样性,
15、开阔解题思路,优化解题方法,增加择优力量。力求让学生在自主探究和合作沟通的过程中进展学习,获得数学活动阅历,教师应留意引导。 中考数学教案大全精选篇4 第2课时反比例函数的图象与性质(2) 教学目标 【学问与技能】 1.会求反比例函数的解析式;2.稳固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性. 【过程与方法】 经受观看、分析、沟通的过程,逐步提高运用学问的力量. 【情感态度】 提高学生的观看、分析力量和对图形的感知水平. 【教学重点】 会求反比例函数的解析式. 【教学难点】 反比例函数图象和性质的运用. 教学过程 一、情景导入,初步认知 1.反比例函数有哪些性质?2
16、.我们学会了依据函数解析式画函数图象,那么你能依据一些条件求反比例函数的解析式吗? 【教学说明】复习上节课的内容,同时引入新课. 二、思索探究,猎取新知 1.思索:已知反比例函数y=的图象经过点P(2,4) (1)求k的值,并写出该函数的表达式; (2)推断点A(-2,-4),B(3,5)是否在这个函数的图象上; (3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化? 分析: (1)题中已知图象经过点P(2,4),即说明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了. (2)要推断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学教案 大全
限制150内