三角形的特性一教学设计三角形的特性教学课件(8篇).docx
《三角形的特性一教学设计三角形的特性教学课件(8篇).docx》由会员分享,可在线阅读,更多相关《三角形的特性一教学设计三角形的特性教学课件(8篇).docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 三角形的特性一教学设计三角形的特性教学课件(8篇)三角形的特性一教学设计 三角形的特性教学课件篇一 1、学问与力量 了解等腰三角形的有关概念,探究并把握等腰三角形的性质;能够用等腰三角形的学问解决相应的数学问题。 2、过程与方法 通过对性质的探究活动和例题的分析,培育学生多角度思索问题的习惯,提高学生分析问题和解决问题的力量。 3、情感、态度与价值观 通过引导学生对图形的观看、发觉,激发学生的奇怪心和求知欲,并在运用数学学问解答问题的活动中猎取胜利的体验,建立学习的自信念。 等腰三角形的性质的探究及应用。 等腰三角形三线合一的性质的理解、证明及其应用。 1、出示人字型屋顶的图片(55页),提
2、问:屋顶被设计成了哪种几何图形? 2、小学我们已经初步熟悉了等腰三角形,这节课我们来详细讨论等腰三角形的性质。 1、动手操作 如图,把一张长方形的纸按图中虚线对折,并剪去阴影局部,再把它绽开,得到的abc有什么特征? 学生课前动手操作,剪出图形,课上从剪出的图形观看abc的特点,可以发觉ab=ac。 学生总结出等腰三角形的概念:有两边相等的三角形叫作等腰三角形,相等的两边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,底边和腰的夹角叫作底角。 找出手中图形的腰、底边、顶角、底角(abc中,若ab=ac,则abc是等腰三角形,ab、ac是腰、bc是底边、a是顶角,b和c是底角。) 2、探究问题 (1
3、)刚刚剪出的等腰三角形abc是轴对称图形吗?它的对称轴是什么? 学生思索、回忆剪纸过程,动手把等腰三角形abc沿折痕对折,简单答复出abc是轴对称图形,折痕ad所在的直线是它的对称轴 (2)把剪出的abc沿折痕ad对折,找出其中重合的线段和角,填入下表: 重合的线段重合的角 (3)从上表中你能发觉等腰三角形具有什么性质吗?说一说你的猜测。 学生经过观看,独立完成上表,然后小组争论沟通,从表中总 结等腰三角形的性质。 引导学生归纳: 性质1 等腰三角形的两个底角相等(简写成“等边对等角”); 性质2 等腰三角形顶角平分线、底边上的中线、底边上的高相互重合。(三线合一) 性质3 等腰三角形是轴对称
4、图形,对称轴为顶角角平分线(或底边上的高,或底边上的中线)所在直线。 1、性质的证明思路 通过上面折叠的过程的启发,你能利用三角形的全等来证明这些性质吗? 学生:我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。 小组沟通,展现证明思路。 (1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何 表达条件和结论?如何证明? 教师引导学生依据猜测的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点: 利用三角形的全等来证明两角相等,为证b=c,需证明以b、c为元素的两个三角形全等,需要添加帮助线构造符合证明要求
5、的两个三角形。 添加帮助线的方法有许多种,常见的有作顶角bac的平分线,或作底边bc上的中线,或作底边bc上的高等,让学生选择一种帮助线并完成证明过程。 (2)回忆性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)吗? 让学生仿照证明性质2,并鼓舞学生用多种方法证明。 问题:如图,已知abc中,ab=ac。 (1) 求证:b=c; (2) (3) ad平分a,adbc。 (4) 学生在独立思索的根底上进展争论,查找解决问题的方法,若证b=c,依据全等三角形的学问可以知道,只需要证明这两个角所在的三角形全等即可,于是可以作帮助线构造两个三角形,
6、做bc边上的中线ad,证明abd和acd全等即可,依据条件利用“边边边”可以证明。 2、证明过程 让学生充分争论,沟通,展现后书写证明过程 证明:方法一 作底边bc的中线ad 在abd和acd中 所以abdacd(sss),所以b=c,bad=cad,adb=adc=90。 3、几何符号语言表述 如图,在abc中 性质1:ab=ac, = 。 性质2: 1ab=ac,bad=cad bd = , 。 2ab=ac,bd=cd bad= , 。 3ab=ac,adbc bad= , bd= 。 4、典例分析 如图,abc中,ac=bc,cd是acb的平分线,ad=4cm,b=30,求ab的长及b
7、cd的度数。 每个小组说说自己的收获 1、等腰三角形的定义及相关概念。 2、等腰三角形的性质。 1、等腰三角形顶角为1500,那么它的另外两个角的度数分别是 。 2、等腰三角形的一个内角为500,则另外两个角的度数分别是 。 3、在等腰abc中,若ab=3,ac=7,则abc的周长为 。 4、如图,在abc中,ab=ac,1=2,bd=be,且a=1000,则dec= 。 三角形的特性一教学设计 三角形的特性教学课件篇二 1、通过观看和操作熟悉三角形,把握三角形的概念,理解三角形的含义; 2、从实例中感知三角形的稳定性以及三角形任意两边之和大于第三边,并能运用学问解决实际问题; 3、熟悉三角形
8、的高,把握三角形高的画法,能画出任意三角形的一条高。 重点:理解三角形的含义,把握三角形的概念。 难点:把握三角形高的画法,能画出三角形的高。 课件、平行四边形和三角形的教具、三角尺。 主要教法选择:观看法、学问迁移法 一、导入 请每位同学从你的抽屉里拿出两根小棒,试一试,你能摆出什么图形? 谁来说说自己摆出了什么图形?(指名说) 下面请每位同学再添上一根小棒,能摆成什么图形?(指名说) 用屏幕出示学生们可能摆出的图形,提问:你能说说自己摆的是什么图形吗?那么,在同学们摆出的图形中,那些是三角形? 今日,我们就来学习三角形的特性。(板书课题:三角形的特性) 二、学习新课 1、学习三角形的定义及
9、组成 在我们的生活中,也有很多三角形,你能说出哪些物体上有三角形吗?(让学生充分发言) 同学们说了这么多,其实在我们的校园中也有很多的三角形,我们一起去看看吧!(播放录像) 刚刚我们一起观看了生活中的三角形,那么你能说说三角形有什么共同的特点吗?(有三条边,三个角,三个顶点等) 提问:那你能说一说什么样的图形叫做三角形吗?(三条线段围成的图形)你认为这句话中哪个词比拟重要?(围成)为什么?(三角形是封闭图形) 那么这三条线段应当怎样去围呢?(每相邻的两条线段端点相连) 请学生相互说一说,什么是三角形。(同桌互说,再指名说) 2、学习两边之和大于第三边 小组活动:请组长将本组的小棒分给组员,每人
10、三根小棒,摆一个三角形,看谁摆得又对又快! 有学生发觉自己的三根小棒摆不成三角形,这是怎么回事啊? 小组讨论:为什么有的三根小棒摆不成三角形? 小组汇报,并总结:三角形任意两边的和大于第三边。 利用所学学问解决实际问题 屏幕出例如3的图,让我们帮忙小明解决一个问题:小明每天上学从哪条路走最近?为什么?(中间的这条路最近,两点之间直线距离最短;三角形两边之和大于第三边) 3、学习三角形的稳定性 嬉戏 让我们来轻松一下,做个嬉戏,比一比谁的力气大。 嬉戏规章:每人一个图形,拉动这个图形,只要使它的外形发生变化,就算赢。 请学生推举两名力气比拟大的学生(一男一女),出示教具,一个三角形,一个平行四边
11、形,先让女生选择一个图形,另外一个就是男生的。 请大家猜测一下,男生和女生谁会赢?为什么? 得出结论:平行四边形简单变形,三角形具有稳定性。 三角形具有稳定性,那么,要想使这个平行四边形也能够固定住,该怎么办呢?(加上一根木条,形成两个三角形。) 正是由于三角形具有稳定性,所以在生活中的运用也特别广泛。 你瞧:这张桌子摇摇摆晃多危急啊!有什么方法加固它呢? 斜着钉两根木条,组成三角形。 4、学习三角形的高 刚刚我们知道了三角形有三个顶点,我们可以用大写字母来表示点,例如,我们可以给这三个点分别取名字为a、b、c,那么这个三角形就可以称为三角形abc,三角形的三条边就可以分别称为ab、ac、bc
12、,下面想请同学上来指一指,每一个顶点分别对应哪条边。 教师边示范边讲解:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。 提示留意:高要画成虚线,而且要画上垂直符号。 想一想:一个三角形中能画出几条高?为什么?(有三条高,由于每个三角形有三个顶点) 学生练习 请每位学生在课本86页,练习十四第一题,请你画出第一个三角形的高。 提示留意:三角形的高要画成虚线,并且要画上垂直符号。 你能画出几条高?那么,另外两个三角形的高你会画吗?试一试,好吗? (让学生相互检查,并说说怎么检查) 三、全课总结 今日这节课,我们一起进一步熟悉了三角形,我们知道了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 特性 教学 设计 课件
限制150内