2011年福建高考文科数学真题及答案.docx
《2011年福建高考文科数学真题及答案.docx》由会员分享,可在线阅读,更多相关《2011年福建高考文科数学真题及答案.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2011年福建高考文科数学真题及答案本试卷第I卷(选择题)和第II卷(非选择题)两部分,第I卷1至3页,第II卷4至6页。满分150分。注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号、姓名是否一致。2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。3.考试结束,考生必须将试题卷和答题卡一并交回。参考公式:样本数据x1,x2.,xn的标准差 其中
2、为样本平均数柱体体积公式V=Sh其中S为底面面积,h为高锥体公式V=Sh其中S为底面面积,h为高球的表面积、体积公式S=4R2,V=R3其中R为球的半径第I卷一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一个项是符合题目要求的。1. 若集合M=-1,0,1,N=0,1,2,则MN等于A.0,1 B.-1,0,1C.0,1,2 D.-1,0,1,22. i是虚数单位1+i3等于A.i B.-i C.1+i D.1-i3. 若aR,则“a=1”是“|a|=1”的A. 充分而不必要条件 B. 必要而不充分条件C. 充要条件 D. 既不充分又不必要条件4.某校选修乒
3、乓球课程的学生中,高一年级有30名,高二年级有40名。现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为A. 6 B. 8 C. 10 D.125.阅读右图所示的程序框图,运行相应的程序,输出的结果是A.3 B.11 C.38 D.1236.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A. (-1,1) B. (-2,2) C. (-,-2) (2,+) D.(-,-1)(1,+)7.如图,矩形ABCD中,点E为边CD的重点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于A B.
4、 C. D. 8.已知函数f(x)=。若f(a)+f(1)=0,则实数a的值等于A. -3 B. -1 C. 1 D. 39.若a(0, ),且sin2a+cos2a=,则tana的值等于A. B. C. D. 10. 若a0, b0, 且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A. 2 B. 3C. 6 D. 911. 设圆锥曲线I的两个焦点分别为F1,F2,若曲线I上存在点P满足:= 4:3:2,则曲线I的离心率等于A. B. C. D. 12.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为k,即k=5n+k丨nZ,k=0,1,2,3,4
5、.给出如下四个结论:20111-33;Z=01234;“整数a,b属于同一“类”的充要条件是“a-b0”.A.1 B.2 C.3 D.4第II卷(非选择题 共90分)注意事项:用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效. 二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡相应位置。13. 若向量a=(1,1),b(-1,2),则ab等于_.14. 若ABC的面积为,BC=2,C=,则边AB的长度等于_.15.如图,正方体ABCD-A1B1C1D1中,AB=2。,点E为AD的中点,点F在CD上,若EF平面AB1C,则线段EF的长度等于_.16.商家通常依
6、据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(ba)以及常数x(0x1)确定实际销售价格c=a+x(b-a),这里,x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c-a)是(b-c)和(b-a)的等比中项,据此可得,最佳乐观系数x的值等于_.三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或验算步骤.17.(本小题满分12分)已知等差数列an中,a1=1,a3=-3.(I)求数列an的通项公式;(II)若数列an的前k项和Sk=-35,求k的值.18.(本小题满分12分)如图,直线l :y=x+b与抛物线C :x2=4y相切于点A。(1)
7、 求实数b的值;(11) 求以点A为圆心,且与抛物线C的准线相切的圆的方程.19.(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:x12345fa0.20.45bc(1) 若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;(11) 在(1)的条件下,将等级系数为4的3件日用品记为x1, x2, x3,等级系数为5的2件日用品记为y1,y2,现从x1, x2, x3, y1, y2,这5件日用品中任取两件(假定每件日用品被取出的可能
8、性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.20.(本小题满分12分)如图,四棱锥P-ABCD中,PA底面ABCD,ABAD,点E在线段AD上,且CEAB。(1) 求证:CE平面PAD;(11)若PA=AB=1,AD=3,CD=,CDA=45,求四棱锥P-ABCD的体积21.(本小题满分12分)设函数f()=,其中,角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且.(1)若点P的坐标为,求的值;(II)若点P(x,y)为平面区域:,上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.22.(本小题满分14分)已知a,b为常数,且a0
9、,函数(e=2.71828是自然对数的底数).(I) 求实数b的值;(II)求函数f(x)的单调区间;(III)当a=1时,是否同时存在实数m和M(mM),使得对每一个tm,M,直线y=t与曲线都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.参考答案一、选择题(共12小题,每小题5分,满分60分)1、若集合M=1,0,1,N=0,1,2,则MN等于()A、0,1B、1,0,1C、0,1,2D、1,0,1,2考点:交集及其运算。专题:计算题。分析:根据集合M和N,由交集的定义可知找出两集合的公共元素,即可得到两集合的交集解答:解:由集合M=1,0,1,N=0,1,2,得到
10、MN=0,1故选A点评:此题考查了交集的运算,要求学生理解交集即为两集合的公共元素,是一道基础题2、i是虚数单位1+i3等于()A、iB、iC、1+iD、1i考点:虚数单位i及其性质。专题:计算题。分析:由复数单位的定义,我们易得i2=1,代入即可得到1+i3的值解答:解:i是虚数单位i2=11+i3=1i故选D点评:本题考查的知识点是虚数单位i及其性质,属简单题,其中熟练掌握虚数单位i的性质i2=1是解答本类问题的关键3、若aR,则“a=1”是“|a|=1”的()A、充分而不必要条件 B、必要而不充分条件C、充要条件D、既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断;充要条件。
11、分析:先判断“a=1”“|a|=1”的真假,再判断“|a|=1”时,“a=1”的真假,进而结合充要条件的定义即可得到答案解答:解:当“a=1”时,“|a|=1”成立即“a=1”“|a|=1”为真命题但“|a|=1”时,“a=1”不一定成立即“|a|=1”时,“a=1”为假命题故“a=1”是“|a|=1”的充分不必要条件故选A点评:本题考查的知识点是充要条件,其中根据绝对值的定义,判断“a=1”“|a|=1”与“|a|=1”时,“a=1”的真假,是解答本题的关键4、某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中
12、抽取了6名,则在高二年级的学生中应抽取的人数为()A、6B、8C、10D、12考点:分层抽样方法。专题:计算题。分析:根据高一年级的总人数和抽取的人数,做出每个个体被抽到的概率,利用这个概率乘以高二的学生数,得到高二要抽取的人数解答:解:高一年级有30名,在高一年级的学生中抽取了6名,每个个体被抽到的概率是=高二年级有40名,要抽取40=8,故选B点评:本题考查分层抽样,在分层抽样过程中每个个体被抽到的概率相等,这是解题的依据,本题是一个基础题5、阅读如图所示的程序框图,运行相应的程序,输出的结果是()A、3B、11C、38D、123考点:程序框图。专题:图表型。分析:通过框图的要求;将第一次
13、循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果解答:解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律6、若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是()A、(1,1) B、(2,2)C、(,2)(2,+)D、(,1)(1,+)考点:一元二次方程的根的分布与系数的关系。专题:计算题。分析:利用题中条件:“关于x的方程x2+mx+1=0有两个不相等的实数根”由韦达定理的出m的关系式,解不等式即可解答:解:关于x
14、的方程x2+mx+1=0有两个不相等的实数根,0,即:m240,解得:m(,2)(2,+)故选C点评:本题考查一元二次方程的根的判别式与根的关系,属于基本运算的考查7、如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于()A、B、C、D、考点:几何概型。专题:常规题型。分析:利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答解答:解:由几何概型的计算方法,可以得出所求事件的概率为P=故选C点评:本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算
15、概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型8、已知函数f(x)=若f(a)+f(1)=0,则实数a的值等于()A、3B、1C、1D、3考点:指数函数综合题。专题:计算题。分析:由分段函数f(x)=,我们易求出f(1)的值,进而将式子f(a)+f(1)=0转化为一个关于a的方程,结合指数的函数的值域,及分段函数的解析式,解方程即可得到实数a的值解答:解:f(x)=f(1)=2若f(a)+f(1)=0f(a)=22x0x+1=2解得x=3故选A点评:本题考查的知识点是分段函数的函数值,及指数函数的综合应用,其中根据分段函数及指数函数的性质,构造关于a的
16、方程是解答本题的关键9、若(0,),且sin2+cos2=,则tan的值等于()A、B、C、D、考点:同角三角函数间的基本关系;二倍角的余弦。专题:计算题。分析:把已知的等式中的cos2,利用同角三角函数间的基本关系化简后,得到关于sin的方程,根据的度数,求出方程的解即可得到sin的值,然后利用特殊角的三角函数值,由的范围即可得到的度数,利用的度数求出tan即可解答:解:由cos2=12sin2,得到sin2+cos2=1sin2=,则sin2=,又(0,),所以sin=,则=,所以tan=tan=故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道
17、基础题学生做题时应注意角度的范围10、若a0,b0,且函数f(x)=4x3ax22bx+2在x=1处有极值,则ab的最大值等于()A、2B、3C、6D、9考点:函数在某点取得极值的条件;基本不等式。专题:计算题。分析:求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解答:解:f(x)=12x22ax2b又因为在x=1处有极值a+b=6a0,b0当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等11、设圆锥
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011 福建 高考 文科 数学 答案
限制150内