2010年福建高考理科数学真题及答案.docx
《2010年福建高考理科数学真题及答案.docx》由会员分享,可在线阅读,更多相关《2010年福建高考理科数学真题及答案.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2010年福建高考理科数学真题及答案第I 卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.计算sin43cos13-cos43sin13的结果等于A B. C. D. 2.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为A. x2+y2+2x=0 B. x2+y2+x=0C. x2+y2-x=0 D. x2+y2-2x=03.设等差数列an前n项和为Sn . 若a1= -11,a4+a6= -6 ,则当Sn 取最小值时,n等于A.6 B. 7 C.8 D.94.函数f(x)= 的零点个数为A. 0 B.
2、 1 C.2 D.35.阅读右图所示的程序框图,运行相应的程序,输出的i值等于A.2 B.3 C.4 D.56.如图,若是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EHA1 D1,则下列结论中不正确的是A. EHFG B.四边形EFGH是矩形C. 是棱柱 D. 是棱台7.若点O和点F(-2,0)分别为双曲线(a0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为A. 3- , ) B. 3+ , ) C. , ) D. , )8.设不等式组所表示的平面区域是,平面区域与
3、关于直线3x-4y-9对称。对于中的任意点A与中的任意点B,AB的最小值等于A. B. 4 C. D. 29.对于复数a,b,c,d,若集合S=a,b,c,d具有性质“对任意x,yS,必有xyS”,则当时,b+c+d等于A. 1 B. -1 C. 0 D. i10.对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x0D,使得当xD且xx0时,总有则称直线l:y=kx+b为曲线y=f(x)与y=g(x)的“分渐近线”。给出定义域均为D=的四组函数如下:f(x)=x2,g(x)= ; f(x)=10-x+2,g(x)= ;f(x
4、)= ,g(x)= ; f(x)= ,g(x)=2(x-1-e-x).其中,曲线y=f(x)与y=g(x)存在“分渐近线”的是A B. C. D. 第卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。11.在等比数列an中,若公比q=4,且前3项之和等于21,则该数列的通项公式an( )12.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于( )。13.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立
5、,则该选手恰好回答了4个问题就晋级下一轮的概率等于( )。14.已知函数f(x)=3sin(x- )( 0)和g(x)=2cos(2x+)+1的图像的对称轴完全相同。若x,则f(x)的取值范围是( )。15已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0, +),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2-x。给出结论如下:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+ );存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b) (2k,2k+1)”.其中所有正确结论的序号是( )。三、解
6、答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。16.(本小题满分13分)设S是不等式x2-x-60的解集,整数m,nS。()记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;()设=m2,求的分布列及其数学期望E。17.(本小题满分13分)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2.0)为其右焦点。()求椭圆C的方程;()是否存在平行于OA的直线L,使得直线L与椭圆C有公共点,且直线OA与L的距离等于4?若存在,求出直线L的方程;若不存在,说明理由。18.(本小题满分13分)如图,圆柱OO1内有一个三棱柱ABC-A1B1C1
7、,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。()证明:平面A1ACC1平面B1BCC1;()设AB=AA1。在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P。(i) 当点C在圆周上运动时,求P的最大值;(ii) 记平面A1ACC1与平面B1OC所成的角为(0b0),且可知左焦点为从而有 解得 , 又,所以,故椭圆C的方程为 (II)假设存在符合题意的直线,其方程为由 得 因为直线与椭圆C有公共点,所以,解得另一方面,由直线OA与的距离可得,从而。由于,所以符合题意的直线不存在。解法二:(I)依题意,可设椭圆C的方程为(ab0),且有: , 解得或(舍
8、去)。从而(II)同解法一18.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积几何概型等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、必然与或然思想。满分13分。解法一 :(I)平面,平面, 是圆O的直径, 又, 平面而平面,所以平面平面。(II)(i)设圆柱的底面半径为r,则 故三棱柱的体积 又 当且仅当时等号成立。从而,而圆柱的体积,故,当且仅当,即时等号成立。所以,的最大值等于(ii)由(i)可知,取最大值时,于是,以O为坐标原点,建立空间直角坐标系(如图),则,平面,是平面的一个法向量设平面的法向量, 取,得平面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010 福建 高考 理科 数学 答案
限制150内