2018年医疗人工智能技术与应用白皮书.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2018年医疗人工智能技术与应用白皮书.pdf》由会员分享,可在线阅读,更多相关《2018年医疗人工智能技术与应用白皮书.pdf(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 医疗人工智能技术与应用白皮书医疗人工智能技术与应用白皮书 (20182018 年)年)互联网医疗健康产业联盟 2018 年 1 月 互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 1 版权声明 本白皮书版权属于互联网医疗健康产业联盟,并受法律保护。转载、摘编或利用其它方式使用本白皮书文字或者观点的,应注明“来源:互联网医疗健康产业联盟”。违反上述声明者,本院将追究其相关法律责任。互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 2 前 言 2017 年医疗人工智能发展迅速,产业格局风起云涌。人工智能在医疗领域中的应用已非常广泛,包括医学影像、临床决策支持、语音识别、药物挖掘、健康管
2、理、病理学等众多领域。人工智能技术呈现与医疗领域不断融合的趋势,其中数据资源、计算能力、算法模型等基础条件的日臻成熟成为行业技术发展的重要力量。在新形势下,我国医疗人工智能的发展面临着机遇和挑战,技术能力不断增强,但产品和服务仍需完善。本白皮书梳理和研究国际、国内医疗人工智能的发展状况,总结医疗人工智能行业及基础设施领域国内外的技术发展特点和趋势,分析我国医疗人工智能产业面临的政策环境,为政府及产业界决策提供参考。互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 3 目 录 一、人工智能的发展一、人工智能的发展.4(一)人工智能的技术演变.4(二)人工智能发展的三大因素.6(三)人工智能上
3、升为我国国家战略.10 二、医疗人工智能的宝贵价值二、医疗人工智能的宝贵价值.12(一)辅助医生诊断,缓解漏诊误诊问题.12(二)提高诊断效率,弥补资源供需缺口.13(三)疾病风险预警,提供健康顾问服务.14(四)支持药物研发,提升制药效率.15(五)手术机器人,提升外科手术精准度.15 三、国内外医疗人工智能发展状况及分析三、国内外医疗人工智能发展状况及分析.16(一)市场规模及发展趋势.16(二)国内外行业发展热点分析.17 四、我国医疗人工智能细分领域四、我国医疗人工智能细分领域.21(一)虚拟助理.22(二)病历与文献分析.25(三)医疗影像辅助诊断.27(四)药物研发.33(五)基因
4、测序.35 五、面临的问题与挑战五、面临的问题与挑战.37(一)数据是行业发展的瓶颈,积累与创新是解决问题的关键.37(二)医疗 AI 产品需要实现从试验向临床应用的突破.38(三)加深合作,可持续的商业模式亟待建立.39(四)明确医疗责任主体,划清权责范围.40(五)制定人才培养计划,抢占战略制高点.41 互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 4 一、人工智能的发展一、人工智能的发展 (一)人工智能的技术演变 从上世纪八九十年代的 PC 时代到二十一世纪的互联网时代,信息技术改造了人类的生产方式,提高了生产效率,改善了我们的生活。在进入移动互联网时代后,万物互联成为趋势,但技
5、术的限制导致移动互联网难以催生出更多的新应用和新业态。如今,人工智能俨然已经成为这个时代最炙手可热的技术,甚至将成为未来十年内信息技术产业发展的焦点。人工智能的概念诞生于上世纪 50 年代,从最初的神经网络和模糊逻辑,到现在的深度学习、图像搜索,人工智能技术经历了一系列的起伏。在 1956 年的一次科学会议上,人工智能的概念被首次确立:让机器像人那样思考和认知,用计算机实现对人脑的模拟。上世纪50 年代至 70 年代是人工智能的早期发展阶段,该阶段人工智能主要用于解决一些小型的数学问题和逻辑问题。此时人工智能出现了一些代表性应用,如机器定理证明、机器翻译、专家系统、模式识别等,但是该阶段人工智
6、能仍可以被归纳为“弱人工智能”时代,其发展和应用还远远不能达到人类的智慧水平。互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 5 1972 年,用于传染性血液诊断和处方的知识工程系统 MYCIN 研发成功,该事件标志着人工智能进入“专家系统”时期。专家系统的出现使得计算机可以和人进行结合,通过对数据的分析解决一些实际的问题。但是专家系统的发展并不顺利,也并未得到广泛的应用。其原因主要有两个方面。一是专业知识的获取需要行业内长时间的积累,大量的行业数据在彼时难以全部植入专家系统。二是专家系统的程序主要由解释性语言“LIPS”编写,其开发效率和易用性较低,难以实现实际应用。人工智能技术发展在
7、彼时陷入的瓶颈使得人类开始思考,如何让计算机自发理解和归纳数据,掌握数据间的规律,即“机器学习”。上世纪 90 年代末,IBM“深蓝”计算机击败国际象棋大师卡斯帕罗夫再次引发了全球对人工智能技术的关注。但是受限于当时的技术条件,人工智能尚无法支撑大规模的商业化应用。2006 年,Geoffrey Hinton教授发表的论文 A Fast Learning Algorithm for Deep Belief Nets中提出了深层神经网络逐层训练的高效算法,使当时计算条件下的神经网络模型训练成为了可能。互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 6(二)人工智能发展的三大因素 人工智能的
8、概念虽然在上世纪已经出现,但由于彼时软硬件条件的不成熟,数据资源的短缺,人工智能并未实现广泛的应用。如今,随着算法、算力等基础技术条件的日渐成熟,行业数据的积累,人工智能得以应用在各个领域。算力。算力。GPU(图形处理器)显著提升了计算机的性能,拥有远超CPU 的并行计算能力。由于处理器的计算方式不同,CPU 擅长处理面向操作系统和应用程序的通用计算任务,而 GPU 擅长完成与显示相关的数据处理。CPU 计算使用基于 x86 指令集的串行架构,适合快速完成计算任务。GPU 拥有多内核处理并行计算,适合处理 3D 图像中上百万的图像像素。此外,FPGA 也在越来越多地应用在 AI 领域。FPGA
9、(Field Programmable Gate Array)是在 PAL、GAL、CPLD 等可编程逻辑器件的基础上进一步发展的产物。它是作为专用集成电路领域中的一种半定制电路而出现的,既解决了全定制电路的不足,又克服了原有可编程逻辑器件门电路数有限的缺点。一方面,FPGA 是可编程重构的硬件,相比 GPU 有更强大的可调控能力;另一方面,与日增长的门资源和内存带宽使得它有更大的设计空间。由于深层神经网络包含多个隐藏层,大量神经元之间的联系计算具有高并行性的特点,具互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 7 备支撑大规模并行计算的 FPGA 和 GPU 架构已成为了现阶段深度学
10、习的主流硬件平台。FPGA 和 GPU 架构能够根据应用的特点定制计算和存储的结构,方便算法进行微调和优化,实现硬件与算法的最佳匹配,获得较高的性能功耗比。算法。算法。深度学习是当前研究和应用的热点算法,也是人工智能的重要领域。深度学习通过构建多隐层模型和学习海量训练数据,可以获取到数据有用的特征。通过数据挖掘进行海量数据处理,自动学习数据特征,尤其适用于包含少量未标识数据的大数据集。深度学习采用层次网络结构进行逐层特征变换,将样本的特征表示变换到一个新的特征空间,从而使分类或预测更加容易。深度学习驱动图像识别精度大幅度提升。2012 年,深度学习模型首次被应用在图像识别大赛(ImageNet
11、),将错误率降至 16.4%,一举夺冠。2015 年,微软通过152 层的深度网络,将图像识别错误率降至 3.57%,而人眼的辨识错误率约在 5.1%,Deep Learning 模型的识别能力已经超过了人眼。在2017 年的 ImageNet 挑战赛中,Momenta 团队利用 SENet 架构夺魁,他们的融合模型在测试集上获得了 2.251%的错误率,对比于去年第一名的结果 2.991%,获得了将近 25%的精度提升。互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 8 图 1 2010-2017 年 ImageNet 竞赛图像识别错误率 自 Hinton 提出 DBN(深度置信网络)
12、以来,深度学习的发展经历了一个快速迭代的周期,其中卷积神经网络(Convolutional Neural Network,CNN)目前已成为图像识别领域应用最广泛的算法模型。在利用卷积神经网络(CNN)进行图像理解的过程中,图像以像素矩阵形式作为原始输入,第一层神经网络的学习功能通常是检测特定方向和形状的边缘的存在与否,以及这些边缘在图像中的位置;第二层往往会检测多种边缘的特定布局,同时忽略边缘位置的微小变化;第三层可以把特定的边缘布局组合成为实际物体的某个部分;后续的层次将会通过全连接层来把这些部分组合起来,实现物体的识别。目前,CNN 已广泛应用于医疗健康行业特别是医疗影像辅助诊断,用以实
13、现病变检测和特定疾病的早期筛查。互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 9 大数据。大数据。机器学习是人工智能的核心和基础,而数据和以往的经验是机器学习优化计算机程序的性能标准。随着大数据时代的到来,来自全球的海量数据为人工智能的发展提供了良好的基础。据 IDC 统计,2011 年全球数据总量已经达到 1.8ZB,并以每两年翻一番的速度增长,预计到 2020 年全球将总共拥有 35ZB 的数据量,数据量增长近20 倍;数据规模方面,预计到 2020 年,全球大数据产业规模将达到2047 亿美元,我国产业规模将突破万亿元1。图 2 全球和中国大数据产业规模 随着电子病历的实施,CT
14、 影像、磁共振成像等放射图像的普及,医疗行业的数据量已呈现指数级增长。据统计,2013 年全球医疗健 1 数据来源:IDC 统计数据 互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 10 康数据量为 153EB,预计年增长率为 48%。通过自然语言理解、机器学习等技术,大量文本、视频、图像等非结构化数据得以分析利用。来源于三甲医院的电子病历数据库,基层医院和体检机构的健康档案数据库,国家各统计部门的人口数据库通过大数据技术可以实现互联互通,形成个人完整生命周期的医疗健康大数据,为人工智能技术在医疗健康行业的应用提供了有力的支撑。(三)人工智能上升为我国国家战略 2017 年 7 月 20
15、 日,国务院正式印发 新一代人工智能发展规划(以下简称规划),提出了面向 2030 年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,部署构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国,描绘了我国新一代人工智能发展的蓝图。规划指出以提升新一代人工智能科技创新能力为主攻方向,构建开放协同的人工智能科技创新体系,把握人工智能技术属性和社会属性高度融合的特征,坚持人工智能研发攻关、产品应用和产业培育“三位一体”推进。其中,对于涉及民生需求的医疗、养老等方面,规划重点提出应加快人工智能创新应用,为公众提供个性化、多元化、高品质服务,包括:推广应用人工智能治疗新模式新手
16、段,建立快速精准的智能医疗体系;探索互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 11 智慧医院建设,开发人机协同的手术机器人、智能诊疗助手,研发柔性可穿戴、生物兼容的生理监测系统,研发人机协同临床智能诊疗方案,实现智能影像识别、病理分型和智能多学科会诊;基于人工智能开展大规模基因组识别、蛋白组学、代谢组学等研究和新药研发,推进医药监管智能化;加强流行病智能监测和防控。同时,国家也从重大科技专项角度支持医疗人工智能发展,医学人工智能成为了 2018 年科技部重大专项的重点。2017 年 5 月份,我国科技部发布“十三五”卫生与健康科技创新专项规划,提出加快引领性技术的创新突破和应用发展
17、,攻克一批急需突破的先进临床诊治关键技术。重点部署生命组学、基因操作、精准医学、医学人工智能、疾病早期发现、新型检测与成像、生物治疗、微创治疗等前沿及共性技术研发,提升我国医学前沿领域原创水平,增强创新驱动源头供给,加快前沿技术创新及临床转化。“十三五”卫生与健康科技创新专项规划对推进医学人工智能的技术发展指明了具体方向:开展医学大数据分析和机器学习等技术研究,开发集中式智能和分布式智能等多种技术方案,重点支持机器智能辅助个性化诊断、精准治疗辅助决策支持系统、辅助康复和照看等研究,支撑智慧医疗发展。互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 12 二、医疗人工智能的宝贵价值二、医疗人
18、工智能的宝贵价值 医疗行业长期存在优质医生资源分配不均,诊断误诊漏诊率较高,医疗费用成本过高,放射科、病理科等科室医生培养周期长,医生资源供需缺口大等问题。随着近些年深度学习技术的不断进步,人工智能逐步从前沿技术转变为现实应用。在医疗健康行业,人工智能的应用场景越发丰富,人工智能技术也逐渐成为影响医疗行业发展,提升医疗服务水平的重要因素。与互联网技术在医疗行业的应用不同,人工智能对医疗行业的改造包括生产力的提高,生产方式的改变,底层技术的驱动,上层应用的丰富。通过人工智能在医疗领域的应用,可以提高医疗诊断准确率与效率;提高患者自诊比例,降低患者对医生的需求量;辅助医生进行病变检测,实现疾病早期
19、筛查;大幅提高新药研发效率,降低制药时间与成本。(一)辅助医生诊断,缓解漏诊误诊问题 医疗数据中有超过 90%的数据来自于医学影像,但是对医学影像的诊断依赖于人工主观分析。人工分析只能凭借经验去判断,容易发生误判。据中国医学会数据资料显示,中国临床医疗每年的误诊人数约为 5700 万人,总误诊率为 27.8%,器官异位误诊率为 60%。以心肌互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 13 绞痛病症为例,其早期临床表现轻微,除胸口痛外,常会伴随出现肩部到手部内侧疼痛,精神焦虑,血压异常等寻常体征现象,对于门诊医生而言很容易发生误诊。对于病理医生而言,从众多细胞中依靠经验找到微小的癌变
20、细胞难度较大,诊断错误现象时有发生。人工智能技术的出现已经在一定程度上缓解了以上问题。利用图像识别技术,通过大量学习医学影像,人工智能辅助诊断产品可以辅助医生进行病灶区域定位,有效缓解漏诊误诊问题。(二)提高诊断效率,弥补资源供需缺口 据统计,我国每千人平均医生拥有量仅为 2.1 人2,医生资源缺口问题较为严重。图 3 我国每千人平均医生拥有量 2 数据来源:卫计委统计数据 互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 14 医生资源缺口问题在影像科、病理科方面尤为严重。目前我国医学影像数据的年增长率约为 30%,而放射科医师数量的年增长率仅为4.1%。放射科医师数量的增长远不及影像数
21、据增长。这个现象意味着放射科医师在未来处理影像数据的压力会越来越大,甚至远远超过负荷。供需不对称的问题在病理方面表现尤甚。据统计,我国病理医生缺口达到 10 万,而培养病理医生的周期却很长,这意味着此问题短 期内将无法解决。面对严重的稀缺资源缺口问题,人工智能技术或将 带来解决这个难题的答案。人工智能辅助诊断技术应用在某些特定病种领域,甚至可以代替医生完成疾病筛查任务,这将大幅提高医疗机构、医生的工作效率,减少不合理的医疗支出。(三)疾病风险预警,提供健康顾问服务 多数疾病都是可以预防的,但是由于疾病通常在发病前期表征并不明显,到病况加重之际才会被发现。虽然医生可以借助工具进行疾辅助预测,但人
22、体的复杂性、疾病的多样性会影响预测的准确程度。人工智能技术与医疗健康可穿戴设备的结合可以实现疾病的风险预测和实际干预。风险预测包括对个人健康状况的预警,以及对流行病互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 15 等公共卫生事件的监控;干预则主要指针对不同患者的个性化的健康管理和健康咨询服务。图 4 人工智能+院前管理:预测+干预(四)支持药物研发,提升制药效率 利用传统手段的药物研发需要进行大量的模拟测试,周期长、成本高。目前业界已尝试利用人工智能开发虚拟筛选技术,发现靶点、筛选药物,以取代或增强传统的高通量筛选(HTS)过程,提高潜在药物的筛选速度和成功率。通过深度学习和自然语言
23、处理技术可以理解和分析医学文献、论文、专利、基因组数据中的信息,从中找出相应的候选药物,并筛选出针对特定疾病有效的化合物,从而大幅缩减研发时间与成本。(五)手术机器人,提升外科手术精准度 智能手术机器人是一种计算机辅助的新型的人机外科手术平台,主要利用空间导航控制技术,将医学影像处理辅助诊断系统、机器人互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 16 以及外科医师进行了有效的结合。手术机器人不同于传统的手术概念,外科医生可以远离手术台操纵机器进行手术,是世界微创外科领域一项革命性的突破。目前达芬奇机器人是世界上最为先进的微创外科手术系统之一,集成了三维高清视野、可转腕手术器械和直觉式
24、动作控制三大特性,使医生将微创技术更广泛地应用于复杂的外科手术。相比于传统手术需要输血,会带来传染疾病等危险,机器人做手术则出血很少。此外,手术机器人可以保证精准定位误差不到 1 毫米,对于一些对精确切口要求非常高的手术实用性很高。三、国内外医疗人工智能发展状况及分析三、国内外医疗人工智能发展状况及分析 (一)市场规模及发展趋势 据统计,到 2025 年人工智能应用市场总值将达到 1270 亿美元,其中医疗行业将占市场规模的五分之一。我国正处于医疗人工智能的风口:2016 年中国人工智能+医疗市场规模达到 96.61 亿元,增长37.9%;2017 年将超过 130 亿元,增长 40.7%;2
25、018 年有望达到 200亿元。投资方面,据 IDC 发布报告的数据显示,2017 年全球对人工智能和认知计算领域的投资将迅猛增长60%,达到125亿美元,在2020年将进一步增加到 460 亿美元。其中,针对医疗人工智能行业的投资互联网医疗健康产业联盟 医疗人工智能技术与应用白皮书 17 也呈现逐年增长的趋势。其中 2016 年总交易额为 7.48 亿美元,总交易数为 90 起,均达到历史最高值3。图 5 2012-2016 年全球医疗人工智能投融资情况(二)国内外行业发展热点分析 国内外科技巨头均重视人工智能技术在医疗领域的布局与应用。IBM在2006年启动Watson项目,于2014年投
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 医疗 人工智能 技术 应用 白皮书
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内