人教版九年级数学下册教案5篇.docx
《人教版九年级数学下册教案5篇.docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册教案5篇.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 人教版九年级数学下册教案5篇 配方法 教学内容 运用直接开平方法,即依据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 教学目标 理解一元二次方程“降次”转化的数学思想,并能应用它解决一些详细问题. 提出问题,列出缺一次项的一元二次方程ax2+c=0,依据平方根的意义解出这个方程,然后学问迁移到解a(ex+f)2+c=0型的一元二次方程. 重难点关键 1.重点:运用开平方法解形如(x+m)2=n(n0)的方程;领悟降次转化的数学思想. 2.难点与关键:通过依据平方根的意义解形如x2=n,学问迁移到依据平方根的意义解形如(x+m)2=n(n0)的方程. 教学过程 一、复习引入
2、 学生活动:请同学们完成以下各题 问题1.填空 (1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2. 问题1:依据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 . 问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探究新知 上面我们已经讲了x2=9,依据平方根的意义,直接开平方得x=3,假如x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢? (学生分组争论) 教师点评:答复是确定的,把2t+1变为
3、上面的x,那么2t+1=3 即2t+1=3,2t+1=-3 方程的两根为t1=1,t2=-2 例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1 分析:很清晰,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 解:(2)由已知,得:(x+3)2=2 直接开平方,得:x+3= 即x+3=,x+3=- 所以,方程的两根x1=-3+,x2=-3- 例2.市政府规划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率. 分析:设每年人均住房面积增长率为x.一年后人均住房面积就应当是10+10x=10(1+x
4、);二年后人均住房面积就应当是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x, 则:10(1+x)2=14.4 (1+x)2=1.44 直接开平方,得1+x=1.2 即1+x=1.2,1+x=-1.2 所以,方程的两根是x1=0.2=20%,x2=-2.2 由于每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%. (学生小结)教师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”. 三、稳固练习 教材 练习.
5、四、应用拓展 例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少? 分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应当是(1+x),三月份的营业额是在二月份的根底上再增长的,应是(1+x)2. 解:设该公司二、三月份营业额平均增长率为x. 那么1+(1+x)+(1+x)2=3.31 把(1+x)当成一个数,配方得: (1+x+)2=2.56,即(x+)2=2.56 x+=1.6,即x+=1.6,x+=-1.6 方程的根为x1=10%,x2=-3.1 由于增长率为正数, 所以该公司二、三月份营业额平均增长率为10%. 五
6、、归纳小结 本节课应把握: 由应用直接开平方法解形如x2=p(p0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p0),那么mx+n=,到达降次转化之目的.若p0则方程无解 六、布置作业 1.教材 复习稳固1、2. 人教版九年级数学下册教案篇2 配方法的敏捷运用 了解配方法的概念,把握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些详细题目. 重点 讲清配方法的解题步骤. 难点 对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先
7、化二次项系数为1,再用配方法求解. 一、复习引入 (学生活动)解以下方程: (1)x2-4x+7=0(2)2x2-8x+1=0 教师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不行以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进展解题. 解:略.(2)与(1)有何关联? 二、探究新知 争论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q的形式,假如q0,方程的根是x=-p;
8、假如q0,方程无实根. 例1解以下方程: (1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式. 解:略. 三、稳固练习 教材第9页练习2.(3)(4)(5)(6). 四、课堂小结 本节课应把握: 1.配方法的概念及用配方法解一元二次方程的步骤. 2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质推断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将常常用到. 五、作业布置 教材第17页复习
9、稳固3.(3)(4). 补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值. (2) 求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数. 人教版九年级数学下册教案篇3 弧、弦、圆心角 1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角. 2.把握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系进展相关的证明和计算. 重点 圆心角、弦、弧之间的相等关系及其理解应用. 难点 从圆的旋转不变性动身,发觉并论证圆心角、弦、弧之间的相等关系. 活动1动手操作,得出性质及概念 1.在两张透亮纸片上,分别作半径相等的O和O. 2.将O绕圆
10、心旋转任意角度后会消失什么状况?圆是中心对称图形吗? 3.在O中画出两条不在同一条直线上的半径,构成一个角,这个角叫什么角?学生先说,教师补充完善圆心角的概念. 如图,AOB的顶点在圆心,像这样的角叫做圆心角. 4.推断图中的角是否是圆心角,说明理由. 活动2连续操作,探究定理及推论 1.在O中,作与圆心角AOB相等的圆心角AOB,连接AB,AB,将两张纸片叠在一起,使O与O重合,固定圆心,将其中一个圆旋转某个角度,使得OA与OA重合,在操作的过程中,你能发觉哪些等量关系,理由是什么?请与小组同学沟通. 2.学生会消失多对等量关系,教师赐予鼓舞,然后,教师小结:在等圆中相等的圆心角所对的弧相等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 下册 教案
限制150内