人教版高一数学必修一教案(4篇).docx
《人教版高一数学必修一教案(4篇).docx》由会员分享,可在线阅读,更多相关《人教版高一数学必修一教案(4篇).docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 人教版高一数学必修一教案(4篇) 重点难点教学: 1.正确理解映射的概念; 2.函数相等的两个条件; 3.求函数的定义域和值域。 教学过程: 1. 使学生娴熟把握函数的概念和映射的定义; 2. 使学生能够依据已知条件求出函数的定义域和值域; 3. 使学生把握函数的三种表示方法。 教学内容: 1.函数的定义 设A、B是两个非空的数集,假如根据某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB81为从集合A到集合B的一个函数(function),记作:yf_A 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫
2、函数值,函数值的集合|f_A83叫值域(range)。明显,值域是集合B的子集。 留意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2.构成函数的三要素 定义域、对应关系和值域。 3、映射的定义 设A、B是两个非空的集合,假如按某一个确定的对应关系f,使对于集合A中的任意 一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从 集合A到集合B的一个映射。 4. 区间及写法: 设a、b是两个实数,且a (1) 满意不等式axb8080的实数x的集合叫做闭区间,表示
3、为a,b; (2) 满意不等式axb8787的实数x的集合叫做开区间,表示为(a,b); 5.函数的三种表示方法 解析法 列表法 图像法 人教版高一数学必修一教案 篇二 教学目标 1、使学生把握的概念,图象和性质。 (1)能依据定义推断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。 (2)能在根本性质的指导下,用列表描点法画出的图象,能从数形两方面熟悉的性质。 (3)能利用的性质比拟某些幂形数的大小,会利用的图象画出形如的图象。 2、通过对的概念图象性质的学习,培育学生观看,分析归纳的力量,进一步体会数形结合的思想方法。 3、通过对的讨论,让学生熟悉到数学的应用价值,激发学生
4、学习数学的兴趣。使学生擅长从现实生活中数学的发觉问题,解决问题。教学建议 教材分析 (1)是在学生系统学习了函数概念,根本把握了函数的性质的根底上进展讨论的,它是重要的根本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的根底,同时在生活及生产实际中有着广泛的应用,所以应重点讨论。 (2)本节的教学重点是在理解定义的根底上把握的图象和性质。难点是对底数在和时,函数值变化状况的区分。 (3)是学生完全生疏的一类函数,对于这样的函数应怎样进展较为系统的理论讨论是学生面临的重要问题,所以从的讨论过程中得到相应的结论当然重要,但更为重要的是要了解系统讨论一类函数的方法
5、,所以在教学中要特殊让学生去体会讨论的方法,以便能将其迁移到其他函数的讨论。 教法建议 (1)关于的定义根据课本上说法它是一种形式定义即解析式的特征必需是的样子,不能有一点差异,诸如,等都不是。 (2)对底数的限制条件的理解与熟悉也是熟悉的重要内容。假如有可能尽量让学生自己去讨论对底数,指数都有什么限制要求,教师再赐予补充或用详细例子加以说明,由于对这个条件的熟悉不仅关系到对的熟悉及性质的分类争论,还关系到后面学习对数函数中底数的熟悉,所以肯定要真正了解它的由来。 关于图象的绘制,虽然是用列表描点法,但在详细教学中应避开描点前的盲目列表计算,也应避开盲目的连点成线,要把表列在关键之处,要把点连
6、在恰当之处,所以应在列表描点前先把函数的性质作一些简洁的争论,取得对要画图象的存在范围,大致特征,变化趋势的也许熟悉后,以此为指导再列表计算,描点得图象。 人教版高一数学必修一教案 篇三 教学目标 1.使学生把握的概念,图象和性质。 (1)能依据定义推断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。 (2)能在根本性质的指导下,用列表描点法画出的图象,能从数形两方面熟悉的性质。 (3)能利用的性质比拟某些幂形数的大小,会利用的图象画出形如的图象。 2.通过对的概念图象性质的学习,培育学生观看,分析归纳的力量,进一步体会数形结合的思想方法。 3.通过对的讨论,让学生熟悉到数学的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高一 数学 必修 教案
限制150内