北师大版八年级上册第一章探索勾股定理精讲小学教育小学考试_小学教育-小学教育.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《北师大版八年级上册第一章探索勾股定理精讲小学教育小学考试_小学教育-小学教育.pdf》由会员分享,可在线阅读,更多相关《北师大版八年级上册第一章探索勾股定理精讲小学教育小学考试_小学教育-小学教育.pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习好资料 欢迎下载 勾股定理 第一节 探索勾股定理 应知 基础知识 1、勾股定理(1)勾股定理的内容:在直角三角形中,两直角边的 等于 的平方 (2)勾股定理的表示方法:如果直角三角形的两直角边分别为,a b,斜边为c,那么有 。2、理解(1)勾股定理存在和运用的前提条件是在直角三角形中,如果不是直角三角形,那么三边之间不存在这种关系。(2)勾股定理把“图形”与“数量”有机地结合起来,即把直角三角形的“形”与三边关系的“数”结合起来,是数形结合思想的典型代表之一。(3)利用勾股定理,可以在直角三角形中已知两边长的情况下,求出未知的第三边长。一般情况下,用,a b表示直角边,c表示斜边,则有:
2、222222222abcbcaacb 在运用勾股定理求第三边时,首先应确定是求直角边还是求斜边,在选择利用勾股定理的原形公式还是变形公式。【例 1】在ABC中,90C,(1)若3,4,ab则c ;(2)若6,10ac,则b ;(3)若:3:4,15a bc,则a ,b 。【例 2】已知直角三角形的两边长分别是 3 和 4,如果这个三角形是直角三角形,求以第三边为边长的正方形的面积。学习好资料 欢迎下载 3、勾股定理的验证 至少掌握勾股定理的三种验证方法,并从中体会到这种验证方法所体现的数学思想。【例3】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的 勾 股圆方图,它是由
3、四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所 示)如果大正方形的面积是 13,小正方形的面积是 1,直角三角形较短直角边为 a,较长 直角边为 b,那么2()ab的值为()A13 B19 C25 D169 应会 基本方法 1、如何利用勾股定理求长度 利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直 角三角形问题。在已知两边求第三边时,关键是弄清已知什么边,要求什么边,用平方和还 是平方差。【例 4】如图,有一只小鸟在一棵高 13m 的大树树梢上捉虫子,它的伙伴在离该树 12m,高 8m 的一棵小树树梢上发出友好的叫声,它立刻以 2m/s 的速度飞向
4、小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?【例 5】已知:如图,四边形 ABCD 中,B,D 是 Rt,A=45 若 DC=2cm,AB=5cm,求 AD 和 BC 的长 【例 6】如图,第个等腰直角三角形的直角边长等于 1,以它的斜边长为腰长作第 个等腰直角三角形,再以第个等腰直角三角形的斜边长为腰长作第个等腰直角三角形依次得到一系列的等腰直角三角形,其序号依次为、(1)分别求出第、个等腰直角三角形的斜边长;(2)归纳出第 n 个等腰直角三角形的斜边长(n 为正整数)2、如何利用勾股定理求面积 利用勾股定理求面积,关键是注意转化思想的应用,把所求得面积转化到已知的数量关 边的
5、等于的平方勾股定理的表示方法如果直角三角形的两直角边分别为斜边为那么有理解勾股定理存在和运用的前提条件是在直角三角形中如果不是直角三角形那么三边之间不存在这种关系勾股定理把图形与数量有机地结合起来即知两边长的情况下求出未知的第三边长一般情况下用表示直角边表示斜边则有在运用勾股定理求第三边时首先应确定是求直角边还是求斜边在选择利用勾股定理的原形公式还是变形公式例在中若则若则若则例已知直角三角形的两边至少掌握勾股定理的三种验证方法并从中体会到这种验证方法所体现的数学思想例年月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的勾股圆方图它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方
6、形学习好资料 欢迎下载 S1 S2 S3 A B C 系中去,有时还要注意整体思想的应用。【例 7】如图,在 RtABC 中,ACB90,以ABC 各边为边在ABC 外作三个正方形,S1,S2,S3分别表示这三个正方形的面积,S1=81,S3=225,则 S2=。变式:将ABC 外的三个正方形换成其它图形是否有类似结论呢?如图,以直角三角形的三边为直径作三个半圆,则这三个半圆的面积 S1、S2、S3之间的关系是_ 【例 8】下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是 直角三角形若正方形 A、B、C、D 的边长分别是 3、5、2、3,则最大正方形 E 的面积是()A13
7、 B26 C47 D94 【例 9】直角三角形周长为 12cm,斜边长为 5cm,求直角三角形的面积。3、勾股定理与方程相结合的应用 在进行直角三角形的有关计算中,如果不能直接运用勾股定理求解时,往往通过勾股定理列方程求解。【例 10】如图,有一块直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边AC 沿直线 AD 对折,使它落在斜边 AB 上,且与 AE 重合,求 CD 的长 边的等于的平方勾股定理的表示方法如果直角三角形的两直角边分别为斜边为那么有理解勾股定理存在和运用的前提条件是在直角三角形中如果不是直角三角形那么三边之间不存在这种关系勾股定理把图形与数量有机地结合起来即知
8、两边长的情况下求出未知的第三边长一般情况下用表示直角边表示斜边则有在运用勾股定理求第三边时首先应确定是求直角边还是求斜边在选择利用勾股定理的原形公式还是变形公式例在中若则若则若则例已知直角三角形的两边至少掌握勾股定理的三种验证方法并从中体会到这种验证方法所体现的数学思想例年月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的勾股圆方图它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形学习好资料 欢迎下载 【例 11】如图,ABC 中,AB=13,BC=14,AC=15,求 BC 边上的高 AD 【例 12】为了丰富少年儿童的业余文化生活,某社区在如图 9 所示 AB 所在的直线
9、上建一图书阅览室,本社区有两所学校所在的位置在点 C 和 D 处CAAB于 A,DBAB于B,已知 AB=25 km,CA=15km,DB=10km,试问:阅览室 E 应建在距 A多少处,才能使它到 C、D 两所学校的距离相等?【例 13】一架梯子的长度为 25 米,如图斜靠在墙上,梯子顶端离墙底端为 7 米。(1)这个梯子顶端离地面有多高?(2)如果梯子的顶端下滑了 4 米,那么梯子的底部在水平方向滑动了几米?【规律总结】第二节 勾股定理逆定理 边的等于的平方勾股定理的表示方法如果直角三角形的两直角边分别为斜边为那么有理解勾股定理存在和运用的前提条件是在直角三角形中如果不是直角三角形那么三边
10、之间不存在这种关系勾股定理把图形与数量有机地结合起来即知两边长的情况下求出未知的第三边长一般情况下用表示直角边表示斜边则有在运用勾股定理求第三边时首先应确定是求直角边还是求斜边在选择利用勾股定理的原形公式还是变形公式例在中若则若则若则例已知直角三角形的两边至少掌握勾股定理的三种验证方法并从中体会到这种验证方法所体现的数学思想例年月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的勾股圆方图它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形学习好资料 欢迎下载 应知 基础知识 1、勾股定理逆定理的内容:如果三角形的三边长 a,b,c 满足 ,那么这个三角形是 ,且最长边所对的角为
11、 。总结:到目前为止判定直角三角形的方法有多少种了?2、理解:(1)勾股定理是直角三角形的性质定理,而其逆定理是判定定理;勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。(2)如何用勾股定理的逆定理判定一个三角形是否是直角三角形:首先确定最大边(如:C,但不要认为最大边一定是 C)其次验证 c2与 a2+b2是否具有相等关系,若 c2=a2+b2,则ABC 是以C 为直角的三角形;若 c2a2+b2,则ABC 是以C 为钝角的三角形;若 c2a2+b2,则ABC 是以C 为锐角三角形。3勾股数 能够成为直角三角形三条边长的三个正整数,称为 显然,一组勾股数必须满足两个条件:满足 ;
12、都是 。若(a,b,c)为一组基本勾股数,则(ka,kb,kc)也为勾股数,其中 k 为正整数。即将一组勾股数同时扩大或缩小相同的倍数仍是一组勾股数。【例 1】若三角形三边长分别为1,2,3mmm,当m 时,此三角形为直角三角形。【例 2】7,24,25;8,15,19;0.6,0.8,1.0;3,4,5(1n n n n,且为自然数)。上面各组数中,勾股数有 (填序号)。应会 基本方法 1、利用非负数的性质判断三角形的形状【例 3】已知2212(13)10250 xyzz ,试判断以,x y z为三边长的三角形的形状。【练习】如果一个三角形的三边长,a b c满足222200121620ab
13、cabc,试说明这个三角形是直角三角形。【例 4】请阅读下列解题过程:已知 a、b、c 为ABC 的三边,且满足 a2c2-b+2c2=a4-b4,边的等于的平方勾股定理的表示方法如果直角三角形的两直角边分别为斜边为那么有理解勾股定理存在和运用的前提条件是在直角三角形中如果不是直角三角形那么三边之间不存在这种关系勾股定理把图形与数量有机地结合起来即知两边长的情况下求出未知的第三边长一般情况下用表示直角边表示斜边则有在运用勾股定理求第三边时首先应确定是求直角边还是求斜边在选择利用勾股定理的原形公式还是变形公式例在中若则若则若则例已知直角三角形的两边至少掌握勾股定理的三种验证方法并从中体会到这种验
14、证方法所体现的数学思想例年月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的勾股圆方图它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形学习好资料 欢迎下载 试判断ABC 的形状 解:a2c2-b2c2=a4-b4,A c2(a2-b2)=(a2+b2)(a2-b2),B c2=a2+b2,C ABC 为直角三角形D 问:(1)在上述解题过程中,从哪一步开始出现错误:;(2)错误的原因是:;(3)本题正确的结论是:【规律总结】2、勾股数【例 5】观察下表:列举猜想 3,4,5 32=4+5 5,12,13 52=12+13 7,24,25 72=24+25 13,b,c 13
15、2=b+c 请你结合该表格及相关知识,求出 b,c 的值 【练习】(1)一位同学从勾股数“3,4,5”中发现,2231314,522,由此他发现最小数是奇数的勾股数的构造方法你发现了吗?请你写出一下几组勾股数组:5,12,13;7,24,25;9,40,41;(2)写出一般规律的表达方式,(用字母 n 表示,n 为正整数)边的等于的平方勾股定理的表示方法如果直角三角形的两直角边分别为斜边为那么有理解勾股定理存在和运用的前提条件是在直角三角形中如果不是直角三角形那么三边之间不存在这种关系勾股定理把图形与数量有机地结合起来即知两边长的情况下求出未知的第三边长一般情况下用表示直角边表示斜边则有在运用
16、勾股定理求第三边时首先应确定是求直角边还是求斜边在选择利用勾股定理的原形公式还是变形公式例在中若则若则若则例已知直角三角形的两边至少掌握勾股定理的三种验证方法并从中体会到这种验证方法所体现的数学思想例年月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的勾股圆方图它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形学习好资料 欢迎下载【例 6】我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦 并 发现了“勾股定理”若直角三角形三边长都为正整数,则称为一组勾股数,如“勾 3 股 4 弦5”勾股数的寻找与判断不是件很容易的事,不过还是有一些规律可循的(以下 n 为正
17、整数,且 n2)(1)观察:3、4、5;5、12、13;7、24、25;,小明发现这几组勾股数的勾都是奇数,从 3 起就没有间断过,且股和弦只相差 1小明根据发现的规律,推算出这一类的勾股数可以表示为:2n-1、2n(n-1)、2n(n-1)+1请问:小明的这个结论正确吗?(2)继续观察第一个数为偶数的情况:4、3、5;6、8、10;8、15、17;,你能像小明一样发现每组勾股数中的其他两边长都有何规律吗?若用 2n 表示第一个偶数,请分别用 n 的代数式来表示其他两边,并证明确实是勾股数 【规律总结】1、解题时,记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;2
18、、用含字母的代数式表示的勾股数:221,2,1nn n(2,nn为正整数);2221,22,221nnnnn(n为正整数);2222,2,mnmn mn(,mn m n为正整数)。3、勾股定理及勾股定理逆定理的综合应用 勾股定理及勾股定理逆定理的综合应用主要体现在下面几个方面:(1)利用勾股定理及勾股定理逆定理解决生活中的实际问题;(2)计算图形中的线段、角度以及面积的大小;(3)证明线段垂直或成平方和关系。【例 7】如图,四边形 ABCD 中,已知BAD=90,且 AB=3,BC=12,CD=13,DA=4 求四边形的面积 变式:如图所示,在四边形 ABCD 中,已知:AB:BC:CD:DA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 上册 第一章 探索 勾股定理 小学教育 小学 考试
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内