七年级数学下册《平方根》第二课时教案中学教育中学学案_中学教育-中学学案.pdf
《七年级数学下册《平方根》第二课时教案中学教育中学学案_中学教育-中学学案.pdf》由会员分享,可在线阅读,更多相关《七年级数学下册《平方根》第二课时教案中学教育中学学案_中学教育-中学学案.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习好资料 欢迎下载 七年级数学下册平方根第二课时教案 七年级数学下册平方根第二课时教案 一、内容和内容解析 1内容 无限不循环小数;求算术平方根的更一般的方法-用有理数估算、用计算器求值 2内容解析 无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程 用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力 使用计算器可以求任何
2、正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法这完全可以让学生自己完成 基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围 二、目标和目标解析 学习好资料 欢迎下载 1教学目标 (1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值 (2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律 2目标解析 (1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有
3、理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围 (2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动 2 位,它的算术平方根就相应地向右或向左移动 1位,即被开方数每扩大(或缩小)100 倍,它的算术平方根就扩大(或缩小)10 倍 三、教学问题诊断分析 用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的
4、性质,还要判断被开方数在哪两个内容无限不循环小数求算术平方根的更一般的方法用有理数估算用计算器求值内容解析无限不循环小数的引入教科书是通过用有理数估计的大小得到的越来越精确的近似值进而发现是一个无限不循环小数的结论发现无限不循环小数常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小这种估算在生活中经常遇到是学生生活中需要的一种能力使用计算器可以求任何正数的平方根但不同品牌的计算器按键顺序可能不同教于以上分析确定本节课的教学重点为用有理数估计一个带算术平方根符号的无理数的大致范围二目标和目标解析学习好资料欢迎下载教学目标通过估算体验无限不循环小数的含义能用估算求
5、一个数的算术平方根的近似值会利用计算学习好资料 欢迎下载 相邻的整数平方数之间 为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求 基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义 四、教学过程设计 1梳理旧知,引出新课 问题 1(1)什么是算术平方根?怎样表示?(2)负数有算术平方根吗?师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数
6、不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容 2问题探究,学习新知 问题 2 能否用两个面积为 1d 的小正方形拼成一个面积为 2d的大正方形?师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法 内容无限不循环小数求算术平方根的更一般的方法用有理数估算用计算器求值内容解析无限不循环小数的引入教科书是通过用有理数估计的大小得到的越来越精确的近似值进而发现是一个无限不循环小数的结论发现无限不循环小数常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小这种估算在生活中经常遇到是学生生
7、活中需要的一种能力使用计算器可以求任何正数的平方根但不同品牌的计算器按键顺序可能不同教于以上分析确定本节课的教学重点为用有理数估计一个带算术平方根符号的无理数的大致范围二目标和目标解析学习好资料欢迎下载教学目标通过估算体验无限不循环小数的含义能用估算求一个数的算术平方根的近似值会利用计算学习好资料 欢迎下载 追问(1)拼成的这个面积为 2d的大正方形的边长应该是多少呢?师生活动:学生自行解答,教师对解答有困难的学生进行指导 追问(2)小正方形的对角线的长是多少呢?师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长 d 设计意图:通过实际问题的操作探究,说明实际生活中确实存
8、在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备 问题 3 有多大呢?为了弄清这个问题,请同学们探究“在哪两个整数之间呢?”师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于 1而小于 2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程 追问(1)那么是 1 点几呢?你能不能得到的更精确的范围?师生活动:学生用试验的方法可得到平方数小于 2且最接近的 1位小数是 14,而平方数大于 2且最接近的 1位小数是 15,所以大于 14而小于 15,在此基础上教师按教科书上的推理进行讲解并板书说明是一个无
9、限不循内容无限不循环小数求算术平方根的更一般的方法用有理数估算用计算器求值内容解析无限不循环小数的引入教科书是通过用有理数估计的大小得到的越来越精确的近似值进而发现是一个无限不循环小数的结论发现无限不循环小数常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小这种估算在生活中经常遇到是学生生活中需要的一种能力使用计算器可以求任何正数的平方根但不同品牌的计算器按键顺序可能不同教于以上分析确定本节课的教学重点为用有理数估计一个带算术平方根符号的无理数的大致范围二目标和目标解析学习好资料欢迎下载教学目标通过估算体验无限不循环小数的含义能用估算求一个数的算术平方根的近似
10、值会利用计算学习好资料 欢迎下载 环小数,以及什么是无限不循环小数并要求学生回忆以前学过的数,进行比较 追问(2)实际上,许多正有理数的算术平方根,如,等都是无限不循环小数根据估计的大小的方法,请你估计的整数部分是多少?设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础追问(2)主要为及时巩固估算方法 3用计算器,求算术根 例 1 用计算器求下列各式的值:(1);(2)(精确到 0001)师生活动:教师指导学生操作,获得问题答案解答完(2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平方根 七年 级数 下册 第二 课时 教案 中学 教育
限制150内