数列求和方法总结中学教育高考_中学教育-中学课件.pdf
《数列求和方法总结中学教育高考_中学教育-中学课件.pdf》由会员分享,可在线阅读,更多相关《数列求和方法总结中学教育高考_中学教育-中学课件.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、教学目标:1熟练掌握等差数列与等比数列的求和公式;2能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算;3熟记一些常用的数列的和的公式 二、教学重点:特殊数列求和的方法 三、教学过程:(一)主要知识:1直接法:即直接用等差、等比数列的求和公式求和。(1)等差数列的求和公式:dnnnaaanSnn2)1(2)(11 (2)等比数列的求和公式)1(1)1()1(11qqqaqnaSnn(切记:公比含字母时一定要讨论)2公式法:222221(1)(21)1236nkn nnkn L 2333331(1)1232nkn nkn L 3错位相减法:比如.,2211的和求等比等差nnnnb
2、abababa 4裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。常见拆项公式:111)1(1nnnn ;11 11()(2)22n nnn )121121(21)12)(12(1nnnn !)!1(!nnnn 5分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。6合并求和法:如求22222212979899100的和。7倒序相加法:8其它求和法:如归纳猜想法,奇偶法等(二)主要方法:1求数列的和注意方法的选取:关键是看数列的通项公式;2求和过程中注意分类讨论思想的运用;3转化思想的运用;(三)例题分析:例 1求和:个nnS111111111 22222)1
3、()1()1(nnnxxxxxxS 求数列 1,3+4,5+6+7,7+8+9+10,前 n 项和nS 思路分析:通过分组,直接用公式求和。解:)110(9110101011112kkkka个)101010(91)110()110()110(9122nSnnn81109109)110(10911nnnn)21()21()21(224422nnnxxxxxxS nxxxxxxnn2)111()(242242(1)当1x时,nxxxxnxxxxxxSnnnnnn2)1()1)(1(21)1(1)1(22222222222(2)当nSxn4,1 时 kkkkkkkkkkak23252)23()12(
4、)1()12()12(2)12(2 2)1(236)12)(1(25)21(23)21(2522221nnnnnnnaaaSnn)25)(1(61nnn 总结:运用等比数列前 n 项和公式时,要注意公比11qq或讨论。2错位相减法求和 例 2已知数列)0()12(,5,3,112aanaan,求前 n 项和。行求和熟记一些常用的数列的和的公式二教学重点特殊数列求和的方法三教学过程一主要知识直接法即直接用等差等比数列的求和公式求和等差数列的求和公式等比数列的求和公式切记公比含字母时一定要讨论公式法错位相减法比列的每一项分成若干项使其转化为等差或等比数列再求和合并求和法如求的和倒序相加法其它求和法
5、如归纳猜想法奇偶法等二主要方法求数列的和注意方法的选取关键是看数列的通项公式求和程中注意分类讨论思想的运用转化思想和公式时要注意公比或讨论错位相减法求和例已知数列求前项和思路分析已知数列各项是等差数列与等比数列应项积可用错位相减法求和对解当时当时裂项相消法求和例求和思路分析分式求和可用裂项相消法求和解练习求答案倒序思路分析:已知数列各项是等差数列 1,3,5,2n-1 与等比数列120,naaaa对应项积,可用错位相减法求和。解:1)12(53112nnanaaS 2)12(5332nnanaaaaS nnnanaaaaSa)12(22221)1(:21132 当nnnnaaaSaa)12()
6、1()1(21)1(,121时 21)1()12()12(1aananaSnnn 当2,1nSan时 3.裂项相消法求和 例 3.求和)12)(12()2(534312222nnnSn 思路分析:分式求和可用裂项相消法求和.解:)121121(211)12)(12(11)12)(12(11)2()12)(12()2(22kkkkkkkkkkak 12)1(2)1211(21)121121()5131()311(2121nnnnnnnnaaaSnn练习:求nnanaaaS32321 答案:)1()1()1()1()1(2)1(2aaaanaaannSnnn 4.倒序相加法求和 例 4 求证:nn
7、nnnnnCnCCC2)1()12(53210 思路分析:由mnnmnCC可用倒序相加法求和。证:令)1()12(53210nnnnnnCnCCCS 则)2(35)12()12(0121nnnnnnnnCCCCnCnS mnnmnCC nnnnnnCnCnCnCnS)22()22()22()22(2:)2()1(210有 nnnnnnnnCCCCnS2)1()1(210 等式成立 行求和熟记一些常用的数列的和的公式二教学重点特殊数列求和的方法三教学过程一主要知识直接法即直接用等差等比数列的求和公式求和等差数列的求和公式等比数列的求和公式切记公比含字母时一定要讨论公式法错位相减法比列的每一项分成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 求和 方法 总结 中学 教育 高考 课件
限制150内