高一数学第一单元函数的有关概念知识点中学教育中考_中学教育-中学课件.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高一数学第一单元函数的有关概念知识点中学教育中考_中学教育-中学课件.pdf》由会员分享,可在线阅读,更多相关《高一数学第一单元函数的有关概念知识点中学教育中考_中学教育-中学课件.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 第 1 页 高一数学第一单元函数的有关概念知识点 进入高中学习数学重要的是基础的掌握,以下是第一单元函数的有关概念知识点,请大家仔细阅读。1.函数的概念:设 A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合 A中的任意一个数 x,在集合 B中都有唯一确定的数 f(x)和它对应,那么就称 f:AB为从集合 A到集合 B的一个函数.记作:y=f(x),xA.其中,x 叫做自变量,x 的取值范围 A叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合f(x)|xA 叫做函数的值域.注意:2 如果只给出解析式 y=f(x),而没有指明它的定义域,则函数
2、的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.义域补充 能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的 x 的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。)构成函数的三要素:定义域、对
3、应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备)(见课本 21 页相关例 2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。3.函数图象知识归纳(1)定义
4、:在平面直角坐标系中,以函数 y=f(x),(xA)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x,y)的集合 C,叫做函数 y=f(x),(x A)的图象.C上每一点的坐标(x,y)均满足函数关系 y=f(x),反过来,以满足 y=f(x)的每一组有序实数对 x、y 为坐标的点(x,y),均在 C上.即记为 C=P(x,y)|y=f(x),xA 图象 C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与 Y轴的直线最多只有一个交点的若干条曲线或离散点组成。(2)画法 A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点
5、 P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修 4 三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射 一般地,设 A、B是两个非空的集合,如果按某一个确定的对应法则 f,使对于学习必备 欢迎下载 第 2 页 集合 A中的任意一个元素 x,在集合 B中都有唯一确定的元素 y 与之对应,那么就称对应 f:A B 为从集合 A
6、到集合 B的一个映射。记作 f:A B 给定一个集合 A到 B的映射,如果 aA,bB.且元素 a 和元素 b 对应,那么,我们把元素 b 叫做元素 a 的象,元素 a 叫做元素 b 的原象 说明:函数是一种特殊的映射,映射是一种特殊的对应,集合 A、B及对应法则 f 是确定的;对应法则有方向性,即强调从集合 A到集合 B的对应,它与从B到 A的对应关系一般是不同的;对于映射 f:AB来说,则应满足:()集合 A中的每一个元素,在集合 B中都有象,并且象是唯一的;()集合A中不同的元素,在集合 B中对应的象可以是同一个;()不要求集合B中的每一个元素在集合 A中都有原象。常用的函数表示法及各自
7、的优点:1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值 补充一:分段函数(参见课本 P24-25)在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,
8、并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数 如果 y=f(u),(uM),u=g(x),(xA),则 y=fg(x)=F(x),(xA)称为 f、g 的复合函数。例如:y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数 设函数 y=f(x)的定义域为 I,如果对于定义域 I 内的某个区间 D内的任意两个自变量 x1,x2,当 x1 如果对于区间 D上的任意两个自变量的值 x1,x2,当 x1f(x2),那么就说 f(x)在这个区间上是减函数.区间 D称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 第一 单元 函数 有关 概念 知识点 中学 教育 中考 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内