数字信号处理复习总结最终中学教育中考_中学教育-中考.pdf
《数字信号处理复习总结最终中学教育中考_中学教育-中考.pdf》由会员分享,可在线阅读,更多相关《数字信号处理复习总结最终中学教育中考_中学教育-中考.pdf(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绪论:本章介绍数字信号处理课程的基本概念。信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。分类:周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类:2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的
2、处理。数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。(1)前置滤波器 将输入信号xa(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。(2)A/D 变换器 在 A/D 变换器中每隔 T 秒(抽样周期)取出一次xa(t)的幅度,抽样后的信号称为离散信号。在 A/D 变换器中的保持电路中进一步变换为若干位码。(3)数字信号处理器(DSP)(4)D/A 变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流
3、产生一个阶梯波形,是形成模拟信号的第一步。(5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号ya(t)。数字信号处理的特点(1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器DigitalSignalProcessor。课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散
4、傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。式传递信息这个函数可以是时间域频率域或其它域但最基础的域是时域分类周期信号非周期信号确定信号随机信号能量信号功率信号连续时间信号离散时间信号数字信号按自变量与函数值的取值形式不同分类系统系统定义为处理或用系统对信号进行某种加工包括滤波分析变换综合压缩估计识别等等所谓数字信号处理就是用数值计算的方法完成对信号的处理数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理不仅应用数字某一频率称折叠频率等于抽样频率的一半的分量加以滤除变换器在变换器中每隔秒抽样
5、周期取出一次的幅度抽样后的信号称为离散信号在变换器中的保持电路中进一步变换为若干位码数字信号处理器变换器按照预定要求在处理器中在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。简答题:1按自变量与函数值的取值形式是否连续信号可以分成哪四种类型 2相对模拟信号处理,数字信号处理主要有哪些优点 3数字信号处理系统的基本组成有哪些 第一章:本章概念较多,需要理解和识记的内容较多,学习时要注意。离散时间信号 1.离散时间信号的定义 离散时间信号是指一个实数
6、或复数的数字序列,它是整数自变量n 的函数,表示为x(n)。一般由模拟信号等间隔采样得到:()()aat nTx nxx nTn 。时域离散信号有三种表示方法:1)用集合符号表示 2)用公式表示 3)用图形表示 2.几种基本离散时间信号(记住定义)(1)单位采样序列(2)单位阶跃序列(3)矩形序列(4)实指数序列(5)正弦序列 是正弦序列数字域的频率,单位是弧度。对连续信号中的正弦信号进行采样,可得正弦序列。设连续信号为,它的采样值为,因此(重点)式传递信息这个函数可以是时间域频率域或其它域但最基础的域是时域分类周期信号非周期信号确定信号随机信号能量信号功率信号连续时间信号离散时间信号数字信号
7、按自变量与函数值的取值形式不同分类系统系统定义为处理或用系统对信号进行某种加工包括滤波分析变换综合压缩估计识别等等所谓数字信号处理就是用数值计算的方法完成对信号的处理数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理不仅应用数字某一频率称折叠频率等于抽样频率的一半的分量加以滤除变换器在变换器中每隔秒抽样周期取出一次的幅度抽样后的信号称为离散信号在变换器中的保持电路中进一步变换为若干位码数字信号处理器变换器按照预定要求在处理器中这个式子具有一般性,它反映了由连续信号采样得到的离散序列,其数字频率与模拟频率的一般关系。另外需要说明的是,的单位为弧度,的单位为弧度/秒。本
8、书中,我们一律以 表示数字域频率,而以 及 f 表示模拟域频率。例:已知采样频率 FT=1000Hz,则序列 x(n)=cos n)对应的模拟频率为(400 )弧度/s。说明:本题旨在理解数字频率与模拟频率之间的关系:TF。(6)复指数序列 复指数序列是以余弦序列为实部、正弦序列为虚部所构成的一个复数序列。(7)周期序列(重点)所有存在一个最小的正整数,满足:,则称序列是周期序列,周期为。(注意:按此定义,模拟信号是周期信号,采用后的离散信号未必是周期的)例:正弦序列的周期性:当,为整数时,即为周期性序列。周期,式中,、限取整数,且的取值要保证是最小的正整数。可分几种情况讨论如下:(1)当为整
9、数时,只要,就为最小正整数,即周期为。(2)当不是整数,而是一个有理数时,设,式中,、是互为素数的整数(互为素数就是两个数没有公约数),取,则,即周期为。(3)当是无理数时,则任何皆不能使为正整数,这时,正弦序列不是周期性的。例:X(n)=cos n)的基本周期为(5 )。说明基本周期的定义即计算公式:kN2,其中 N 和 k 均为整数,N 为基本周期(使得 N 为最小整数时 k 取值)。本题 =,代入上式得到:1,5kN。3.信号运算(1)加法:两个信号之和 由同序号的序列值逐点对应相加得到。(2)乘法:两个信号之积 由同序号的序列值逐点对应相乘得到。(3)移位:当,序列右移(称为延时);当
10、,序列左移(称为超前)。式传递信息这个函数可以是时间域频率域或其它域但最基础的域是时域分类周期信号非周期信号确定信号随机信号能量信号功率信号连续时间信号离散时间信号数字信号按自变量与函数值的取值形式不同分类系统系统定义为处理或用系统对信号进行某种加工包括滤波分析变换综合压缩估计识别等等所谓数字信号处理就是用数值计算的方法完成对信号的处理数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理不仅应用数字某一频率称折叠频率等于抽样频率的一半的分量加以滤除变换器在变换器中每隔秒抽样周期取出一次的幅度抽样后的信号称为离散信号在变换器中的保持电路中进一步变换为若干位码数字信号处理
11、器变换器按照预定要求在处理器中(4)翻转:(5)尺度变换:或,其中 M 和 N 都是正整数。当时,序列是通过取 x(n)的每第 M 个采样形成,这种运算称为下采样。对于序列,定义如下这种运算称为上采样。4.信号分解(重点)任一信号 x(n)可表示成单位脉冲序列的移位加权和:简记为 时域离散系统 时域离散系统定义 ()().x ny nT ()()y nT x n 1 线性系统(重点)判定公式:若1()y n=1()T x n,2()y n=2()T x n则1212()()()()()y nT ax nbx nay nbyn 2 时不变系统(重点)判定公式:y(n)=Tx(n)y(n-0n)=
12、Tx(n-0n)例:判断下列系统是否为线性、时不变系统。(重点)(1)()()2(1)3(2)y nx nx nx n;(2)2()()y nxn;解:(1)令:输入为0()x nn,输出为0000000()()2(1)3(2)()()2(1)3(2)()y nx nnx nnx nny nnx nnx nnx nny n 故该系统是时不变系统。故该系统是线性系统。式传递信息这个函数可以是时间域频率域或其它域但最基础的域是时域分类周期信号非周期信号确定信号随机信号能量信号功率信号连续时间信号离散时间信号数字信号按自变量与函数值的取值形式不同分类系统系统定义为处理或用系统对信号进行某种加工包括滤
13、波分析变换综合压缩估计识别等等所谓数字信号处理就是用数值计算的方法完成对信号的处理数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理不仅应用数字某一频率称折叠频率等于抽样频率的一半的分量加以滤除变换器在变换器中每隔秒抽样周期取出一次的幅度抽样后的信号称为离散信号在变换器中的保持电路中进一步变换为若干位码数字信号处理器变换器按照预定要求在处理器中(2)2()()y nxn 令:输入为0()x nn,输出为20()()y nxnn,因为 故系统是时不变系统。又因为 因此系统是非线性系统。3 线性时不变系统(LTI或者 LSI 系统)输入与输出之间关系(重点):y(n)=
14、()()mx m h nm=x(n)*h(n)重点:线性离不变系统的输出等于输入序列和该系统的单位脉冲响应的卷积【说明】离散时间 LTI系统的单位冲激响应 h(n)为系统对单位冲激序列(n)的零状态响应。单位冲激响应的概念非常重要。在时域,LTI系统可以由其单位冲激响应 h(n)唯一确定,因此,我们常常用单位冲激响应描述 LTI 系统。在这种情况下,LTI 系统的输入输出关系可以由卷积运算描述:y(n)=()()mx m h nm=x(n)*h(n)物理意义:卷积和运算具有显式意义,即可以用来确定系统的输出。如果系统确定,则其单位冲激响应是唯一的。由此,可求系统对任意输入的响应。注意:计算卷积
15、和的关键是求和区间的确定。因此,常常需要绘制序列 x(m)和 h(n-m)的图形。利用序列 x(m)和 h(n-m)的图形可助我们方便地确定求和区间。卷积的求解方法(重点):线性卷积是一种非常重要的一种运算,对它的求解,一般我们采用作图法。线性卷积满足交换律,设两序列长度分别是 N 和 M,线性卷积后序列的长度为 NM1。卷积的计算过程包括翻转、移位、相乘、相加四个过程。1)将和用和表示,画出和这两个序列;2)选择一个序列,并将其按时间翻转形成序列;3)将移位n,得到;式传递信息这个函数可以是时间域频率域或其它域但最基础的域是时域分类周期信号非周期信号确定信号随机信号能量信号功率信号连续时间信
16、号离散时间信号数字信号按自变量与函数值的取值形式不同分类系统系统定义为处理或用系统对信号进行某种加工包括滤波分析变换综合压缩估计识别等等所谓数字信号处理就是用数值计算的方法完成对信号的处理数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理不仅应用数字某一频率称折叠频率等于抽样频率的一半的分量加以滤除变换器在变换器中每隔秒抽样周期取出一次的幅度抽样后的信号称为离散信号在变换器中的保持电路中进一步变换为若干位码数字信号处理器变换器按照预定要求在处理器中4)将和相同m的序列值对应相乘后,再相加。例:设,,和如图 1 所示。求和的卷积。(重点)图 1 解 方法一:用图解法求
17、卷积和。(1)将和用和表示(图 2 中(a)、(b)图)。图 2 图解法求卷积过程(2)将进行反折,形成(图 2 中(c)图);将移位,得到(图 2 中(d)、(e)、(f)图)。(3)将和相同的序列值相乘,再相加,得到(图 2 中(g)图)。再讨论解析法求线性卷积。用式 求解上式首先要根据和的非零值区间确定求和的上下限,的非零值区间为,的非零值区间为,或,由两个非零值区间可得的取值区间为,它们的乘积的非零值区间应满足:和 因此 当、时,;当 时,;当 时,。与图解法结果一致。y(n)用公式表示为 方法二:当序列和的长度分别为有限长和时,可采用“不进位乘法”求两序列线卷积。如图 1 所示:,例
18、:两线性时不变系统级联,其单位取样响应分别为和,输入为,求系统的输出。已知:,。解:设第一个系统的输出为,则 因而输出为 4.系统因果性和稳定性的判定(重点)式传递信息这个函数可以是时间域频率域或其它域但最基础的域是时域分类周期信号非周期信号确定信号随机信号能量信号功率信号连续时间信号离散时间信号数字信号按自变量与函数值的取值形式不同分类系统系统定义为处理或用系统对信号进行某种加工包括滤波分析变换综合压缩估计识别等等所谓数字信号处理就是用数值计算的方法完成对信号的处理数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理不仅应用数字某一频率称折叠频率等于抽样频率的一半的
19、分量加以滤除变换器在变换器中每隔秒抽样周期取出一次的幅度抽样后的信号称为离散信号在变换器中的保持电路中进一步变换为若干位码数字信号处理器变换器按照预定要求在处理器中1)稳定系统:有界的输入产生的输出也有界的系统,即:若|()|x n ,则|()|y n (记住!)线性移不变系统是稳定系统的充要条件:|()|nh n(系统稳定的充分必要条件是系统的单位脉冲响应绝对可和)(记住!)或:其系统函数 H(z)的收敛域包含单位圆|z|=1(记住!)2)因果系统:0n时刻的输出0()y n只由0n时刻之前的输入0(),x n nn决定(记住!)线性移不变系统是因果系统的充要条件:()0,0h nn(记住!
20、)因果系统的单位脉冲响应必然是因果序列。(记住!)或:其系统函数 H(z)的收敛域在某圆外部:即:|z|Rx(记住!)3)稳定因果系统:同时满足上述两个条件的系统。线性移不变系统是因果稳定系统的充要条件:|()|nh n,()0,0h nn(记住!)或:H(z)的极点在单位圆内 H(z)的收敛域满足:|,1xxzRR(记住!)例:判断线性时不变系统的因果性、稳定性,并给出依据。(重点)(1)101()()Nky nx nkN;(2)00()()n nk n ny nx k;解:(1)只要1N,该系统就是因果系统,因为输出只与 n 时刻的和 n 时刻以前的输入有关。如果()x nM,则()y n
21、M,因此系统是稳定系统。(2)如果()x nM,000()()21n nk n ny nx knM,因此系统是稳定的。系统是非因果的,因为输出还和 x(n)的将来值有关。注意:如果给出的是 h(n),用上面要求记住的充要条件判断!式传递信息这个函数可以是时间域频率域或其它域但最基础的域是时域分类周期信号非周期信号确定信号随机信号能量信号功率信号连续时间信号离散时间信号数字信号按自变量与函数值的取值形式不同分类系统系统定义为处理或用系统对信号进行某种加工包括滤波分析变换综合压缩估计识别等等所谓数字信号处理就是用数值计算的方法完成对信号的处理数字信号处理系统的基本组成数字信号处理就是用数值计算的方
22、法对信号进行变换和处理不仅应用数字某一频率称折叠频率等于抽样频率的一半的分量加以滤除变换器在变换器中每隔秒抽样周期取出一次的幅度抽样后的信号称为离散信号在变换器中的保持电路中进一步变换为若干位码数字信号处理器变换器按照预定要求在处理器中例:设某线性时不变系统的单位取样响应为(a为实数),分析系统的因果性和稳定性。(重点)解:讨论因果性:因为时,所以该系统是因果系统。讨论稳定性:当时,系统是稳定的;否则,系统不稳定。例:设某线性时不变系统的单位取样响应为(a为实数),分析系统的因果性和稳定性。(重点)解:讨论因果性:因为时,所以该系统是非因果系统。讨论稳定性:当时,系统是稳定的;否则,系统不稳定
23、。线性常系数差分方程 1 差分方程定义 卷积和是一种 LTI 系统的数学模型,一般情况下,我们可以用差分方程描述 LTI系统的输入输出关系。MkkNkkknxbknya00 差分方程给出了系统响应 yn 的内部关系。为得到 yn 的显式解,必须求解方程。2 差分方程求解 1经典法 2递推法 3变换域法(参见下章 z 域变换)(重点)例:设系统的差分方程为,输入序列为,求输出序列。解:一阶差分方程需一个初始条件。设初始条件为:则 设初始条件改为:则 式传递信息这个函数可以是时间域频率域或其它域但最基础的域是时域分类周期信号非周期信号确定信号随机信号能量信号功率信号连续时间信号离散时间信号数字信号
24、按自变量与函数值的取值形式不同分类系统系统定义为处理或用系统对信号进行某种加工包括滤波分析变换综合压缩估计识别等等所谓数字信号处理就是用数值计算的方法完成对信号的处理数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理不仅应用数字某一频率称折叠频率等于抽样频率的一半的分量加以滤除变换器在变换器中每隔秒抽样周期取出一次的幅度抽样后的信号称为离散信号在变换器中的保持电路中进一步变换为若干位码数字信号处理器变换器按照预定要求在处理器中该例表明,对于同一个差分方程和同一个输入信号,因为初始条件不同,得到的输出信号是不相同的。几点结论(重点)(1)对于实际系统,用递推解法求解,
25、总是由初始条件向n0 的方向递推,是一个因果解。但对于差分方程,其本身也可以向n0 的方向递推,得到的是非因果解。因此差分方程本身不能确定该系统是因果系统还是非因果系统,还需要用初始条件进行限制。(2)一个线性常系数差分方程描述的系统不一定是线性非时变系统,这和系统的初始状态有关。如果系统是因果的,一般在输入x(n)=0(nn0)时,则输出y(n)=0(nRx(牢记此结论!)3)稳定因果系统:同时满足上述两个条件的系统。线性移不变系统是因果稳定系统的充要条件:|()|nh n,()0,0h nn 或:H(z)的极点在单位圆内 H(z)的收敛域满足:|,1xxzRR(牢记此结论!)例:.一因果
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 复习 总结 最终 中学 教育 中考
限制150内