人教版八年级数学下册勾股定理的逆定理中学教育中考_中学教育-中学课件.pdf





《人教版八年级数学下册勾股定理的逆定理中学教育中考_中学教育-中学课件.pdf》由会员分享,可在线阅读,更多相关《人教版八年级数学下册勾股定理的逆定理中学教育中考_中学教育-中学课件.pdf(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 人教版八年级数学下册 勾股定理的逆定理(三)教案 一、教学目标 1应用勾股定理的逆定理判断一个三角形是否是直角三角形。2灵活应用勾股定理及逆定理解综合题。3进一步加深性质定理与判定定理之间关系的认识。二、重点、难点 1重点:利用勾股定理及逆定理解综合题。2难点:利用勾股定理及逆定理解综合题。三、例题的意图分析 例 1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。例 2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造 3、4、5 勾股数,利用勾股定理的逆定理证明 DE 就是平行线间距离。例 3(补充
2、)勾股定理及逆定理的综合应用,注意条件的转化及变形。四、课堂引入 勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。五、例习题分析 例 1(补充)已知:在ABC 中,A、B、C 的对边分别是 a、b、c,满足 a2+b2+c2+338=10a+24b+26c。试判断ABC 的形状。分析:移项,配成三个完全平方;三个非负数的和为0,则都为 0;已知 a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。例 2(补充)已知:如图,四边形 ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:四边形 ABCD 的面积。分析:作 DEAB,连结 BD,则可以证明A
3、BD EDB(ASA);DE=AB=4,BE=AD=3,EC=EB=3;在DEC 中,3、4、5 勾股数,DEC 为直角三角形,DEBC;利用梯形面积公式可解,或利用三角形的面积。例 3(补充)已知:如图,在ABC 中,CD 是 AB 边上的高,且 CD2=ADBD。求证:ABC 是直角三角形。分析:AC2=AD2+CD2,BC2=CD2+BD2 AC2+BC2=AD2+2CD2+BD2=AD2+2ADBD+BD2=(AD+BD)2=AB2 六、课堂练习 1若ABC 的三边 a、b、c,满足(ab)(a2 b2 c2)=0,则ABC 是()A等腰三角形;B直角三角形;C等腰三角形或直角三角形;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 勾股定理 逆定理 中学 教育 中考 课件

限制150内