八年级上册数学教案人教版五篇2023年.docx
《八年级上册数学教案人教版五篇2023年.docx》由会员分享,可在线阅读,更多相关《八年级上册数学教案人教版五篇2023年.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 八年级上册数学教案人教版五篇2023 教学目标 1、 理解并把握等腰三角形的判定定理及推论 2、 能利用其性质与判定证明线段或角的相等关系. 教学重点: 等腰三角形的判定定理及推论的运用 教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系. 教学过程: 一、复习等腰三角形的性质 二、新授: I提出问题,创设情境 出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60方向走一段距离到C处时,测得ACB为30,这时,地质专家测得AC的长度就可知河流宽度. 学生们很想
2、知道,这样估测河流宽度的依据是什么?带着这个问题,引导学生学习“等腰三角形的判定”. II引入新课 1.由性质定理的题设和结论的变化,引出讨论的内容在ABC中,苦B=C,则AB= AC吗? 作一个两个角相等的三角形,然后观看两等角所对的边有什么关系? 2.引导学生依据图形,写出已知、求证. 2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称). 强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”. 4.引导学生说出引例中地质专家的测量方法的依据. III例题与练习 1.如图2 其中ABC是等腰三角形的是 2.如图
3、3,已知ABC中,AB=AC.A=36,则C_(依据什么?). 如图4,已知ABC中,A=36,C=72,ABC是_三角形(依据什么?). 若已知A=36,C=72,BD平分ABC交AC于D,推断图5中等腰三角形有_. 若已知 AD=4cm,则BC_cm. 3.以问题形式引出推论l_. 4.以问题形式引出推论2_. 例: 假如三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形. 分析:引导学生依据题意作出图形,写出已知、求证,并分析证明. 练习:5.(l)如图6,在ABC中,AB=AC,ABC、ACB的平分线相交于点F,过F作DE/BC,交AB于点D,交AC于E.问图中哪些三
4、角形是等腰三角形? (2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗? 练习:P53练习1、2、3。 IV课堂小结 1.判定一个三角形是等腰三角形有几种方法? 2.判定一个三角形是等边三角形有几种方法? 3.等腰三角形的性质定理与判定定理有何关系? 4.现在证明线段相等问题,一般应从几方面考虑? V布置作业:P56页习题12.3第5、6题 八年级上册数学教案人教版2 教学目的 1. 使学生娴熟地运用等腰三角形的性质求等腰三角形内角的角度。 2. 生疏等边三角形的性质及判定. 2.通过例题教学,帮忙学生总结代数法求几何角度,线段长度的方法。 教学重点: 等腰三角形的性质及
5、其应用。 教学难点: 简洁的规律推理。 教学过程 一、复习稳固 1.表达等腰三角形的性质,它是怎么得到的? 等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两局部是相互重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以B=C。 等腰三角形的顶角平分线,底边上的中线和底边上的高线相互重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此“三线合一”。 2.若等腰三角形的两边长为3和4,则其周长为多少? 二、新课 在等腰三角形中,有一种
6、特别的状况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。 等边三角形具有什么性质呢? 1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜测。 2.你能否用已知的学问,通过推理得到你的猜测是正确的? 等边三角形是特别的等腰三角形,由等腰三角形等边对等角的性质得到A=B=C,又由A+B+C=180,从而推出A=B=C=60。 3.上面的条件和结论如何表达? 等边三角形的各角都相等,并且每一个角都等于60。 等边三角形是轴对称图形吗?假如是,有几条对称轴? 等边三角形也称为正三角形。 例1.在ABC中,AB=AC,D是BC边上的中点,B=30,
7、求1和ADC的度数。 分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是ABC的顶角平分线,底边上的高,从而ADC=90,l=BAC,由于C=B=30,BAC可求,所以1可求。 问题1:此题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样? 问题2:求1是否还有其它方法? 三、练习稳固 1.推断以下命题,对的打“”,错的打“”。 a.等腰三角形的角平分线,中线和高相互重合( ) b.有一个角是60的等腰三角形,其它两个内角也为60( ) 2.如图(2),在ABC中,已知AB=AC,AD为BA
8、C的平分线,且2=25,求ADB和B的度数。 3.P54练习1、2。 四、小结 由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是查找其中一个结论成立的条件。 五、作业: 1.课本P57第7,9题。 2、补充:如图(3),ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,EOD的度数。 八年级上册数学教案人教版3 教学目标 1.把握等边三角形的性质和判定方法. 2.培育分析问题、解决问题的力量. 教学重点:等边三角形的性质和判定方法. 教学难点:等边三角形性质的应用 教学过程 I创设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上册 数学教案 人教版五篇 2023
限制150内