八年级数学教案7篇.docx
《八年级数学教案7篇.docx》由会员分享,可在线阅读,更多相关《八年级数学教案7篇.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 八年级数学教案7篇 一、学习目标及重、难点: 1、了解方差的定义和计算公式。 2、理解方差概念的产生和形成的过程。 3、会用方差计算公式来比拟两组数据的波动大小。 重点:方差产生的必要性和应用方差公式解决实际问题。 难点:理解方差公式 二、自主学习: (一)学问我先懂: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是 我们用它们的平均数,表示这组数据的方差:即用 来表示。 给力小贴士:方差越小说明这组数据越 。波动性越 。 (二)自主检测小练习: 1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。 2、甲、乙两组数据如下: 甲组:10 9 11 8 12 13 10
2、 7; 乙组:7 8 9 10 11 12 11 12. 分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。 三、新课讲解: 引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm) 甲:9、10、 10、13、7、13、10、8、11、8; 乙:8、13、12、11、10、12、7、7、10、10; 问:(1)哪种农作物的苗长的比拟高(我们可以计算它们的平均数: = ) (2)哪种农作物的苗长得比拟整齐?(我们可以计算它们的极差,你发觉了 ) 归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是 我们用它们的平均数,表示这组数据的方差:即
3、用 来表示。 (一)例题讲解: 例1、 段巍和金志强两人参与体育工程训练,近期的5次测试成绩如下表所示,谁的成绩比拟稳定?为什么?、 测试次数 第1次 第2次 第3次 第4次 第5次 段巍 13 14 13 12 13 金志强 10 13 16 14 12 给力提示:先求平均数,在利用公式求解方差。 (二)小试身手 1、.甲、乙两名学生在一样的条件下各射靶10次,命中的环数如下: 甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7 经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定 去参与竞赛。 1、求以下数据的众数: (1)3
4、, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2 2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少? 四、课堂小结 方差公式: 给力提示:方差越小说明这组数据越 。波动性越 。 每课一首诗:求方差,有公式;先平均,再求差; 求平方,再平均;所得数,是方差。 五、课堂检测: 1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒) 小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9 小兵 10.9 10.
5、9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8 假如依据这几次成绩选拔一人参与竞赛,你会选谁呢? 六、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应局部习题 七、学习小札记: 写下你的收获,沟通你的阅历,共享你的成果,你会感到无比的欢乐! 八年级数学教案 篇二 课时目标 1把握分式、有理式的概念。 2把握分式是否有意义、分式的值是否等于零的识别方法。 教学重点 正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。 教学难点: 正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。 教学时间:一课时。 教学用具:投影仪等。 教
6、学过程: 一复习提问 1什么是整式?什么是单项式?什么是多项式? 2推断以下各式中,哪些是整式?哪些不是整式? m2 1xy2 二新课讲解: 设问:不是整工式子中,和整式有什么区分? 小结:1分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。 练习:以下各式中,哪些是分式哪些不是? (1)、(2)、(3)、(4)、(5)x2、(6)4 强调:(6)4带有是无理式,不是整式,故不是分式。 2小结:对整式、分式的正确区分:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必需含有字母,这是分式与整式的根本区分。 练习:课后练习P6练习1、2题 设问:(让
7、学生看课本上P5“思索”局部,然后回答下列问题。) 例题讲解:课本P5例题1 分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。 (板书解题过程。) 3小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。 增加例题:当x取什么值时,分式有意义? 解:由分母x24=0,得x=2。 当x2时,分式有意义。 设问:什么时候分式的值为零呢? 例: 解:当 分式的值为零 八年级数学教案 篇三 学问目标:理解函数的概念,能精确识别出函数关系中的自变量和函数 力量目标:会用变化的量描述事物 情感目标:
8、回用运动的观点观看事物,分析事物 重点:函数的概念 难点:函数的概念 教学媒体:多媒体电脑,计算器 教学说明:留意区分函数与非函数的关系,学会确定自变量的取值范围 教学设计: 引入: 信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗? 新课: 问题:(1)如图是某日的气温变化图。 这张图告知我们哪些信息? 这张图是怎样来展现这天各时刻的温度和刻画这铁的气温变化规律的? (2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数: 这表告知我们哪些信息? 这张表是怎样刻画波长和频率之间的变化
9、规律的,你能用一个表达式表示出来吗? 一般的,在一个变化过程中,假如有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。假如当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。 范例:例1 推断以下变量之间是不是函数关系: (5) 长方形的宽肯定时,其长与面积; (6) 等腰三角形的底边长与面积; (7) 某人的年龄与身高; 活动1:阅读教材7页观看1. 后完成教材8页探究,利用计算器发觉变量和函数的关系 思索:自变量是否可以任意取值 例2 一辆汽车的油箱中现有汽油50L,假如不再加油,那么油箱中的油量y(单位:L)随行驶里程x
10、(单位:km)的增加而削减,平均耗油量为0.1L/km。 (1) 写出表示y与x的函数关系式。 (2) 指出自变量x的取值范围。 (3) 汽车行驶200km时,油箱中还有多少汽油? 解:(1)y=50-0.1x (2)0500 (3)x=200,y=30 活动2:练习教材9页练习 小结:(1)函数概念 (2)自变量,函数值 (3)自变量的取值范围确定 作业:18页:2,3,4题 八年级数学教案 篇四 教学建议 1、平行线等分线段定理 定理:假如一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。 留意事项:定理中的。平行线组是指每相邻的两条距离都相等的特别的平行线组;它是
11、由三条或三条以上的平行线组成。 定理的作用:可以用来证明同始终线上的线段相等;可以等分线段。 2、平行线等分线段定理的推论 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。 记忆方法:“中点”+“平行”得“中点”。 推论的用途:(1)平分已知线段;(2)证明线段的倍分。 重难点分析 本节的重点是平行线等分线段定理。由于它不仅是推证三角形、梯形中位线定理的根底,而且是第五章中“平行线分线段成比例定理”的根底。 本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在熟悉和理解上有肯定的难度,在加上平行线等分
12、线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新奇好玩但把握不深的状况发生,教师在教学中要加以留意。 教法建议 平行线等分线段定理的引入 生活中有很多平行线等分线段定理的例子,并不生疏,平行线等分线段定理的引入可从下面几个角度考虑: 从生活实例引入,如刻度尺、作业本、栅栏、等等; 可用问题式引入,开头时设计一系列与平行线等分线段定理概念相关的问题由学生进展思索、讨论,然后给出平行线等分线段定理和推论。 教学设计例如 一、教学目标 1、使学生把握平行线等分线段定理及推论。 2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培育学生的作图力量。 3、通过定理的变式
13、图形,进一步提高学生分析问题和解决问题的力量。 4、通过本节学习,体会图形语言和符号语言的和谐美 二、教法设计 学生观看发觉、争论讨论,教师引导分析 三、重点、难点 1、教学重点:平行线等分线段定理 2、教学难点:平行线等分线段定理 四、课时安排 l课时 五、教具学具 计算机、投影仪、胶片、常用画图工具 六、师生互动活动设计 教师复习引入,学生画图探究;师生共同归纳结论;教师示范作图,学生板演练习 七、教学步骤 【复习提问】 1、什么叫平行线?平行线有什么性质。 2、什么叫平行四边形?平行四边形有什么性质? 【引入新课】 由学生动手做一试验:每个同学拿一张横格纸,首先观看横线之间有什么关系?(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 数学教案
限制150内