《2023年-仓储管理计算题.docx》由会员分享,可在线阅读,更多相关《2023年-仓储管理计算题.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 .某公司经过对某种产品库存的仔细研究,发现其存货持有成本为产品的单位成本的25%, 并且由于出现缺货所导致的延期交货的成本为每年产品的单位成本的150%。这种产品 的单位成本为400元,每次再订货成本为100元。针对这种产品的每年的需求是恒定不 变的,为300个产品单位,并且所有的缺货情况都可以通过延期交货的方式来进行弥补。 最佳的订购政策是什么?在一年中有多少比例的时间是通过延期交货来满足需求的?2 .某种产品的需求是每年2000个产品单位,每一个订单的成本是10元,每年的存货持有成本是产品单位成本的40%,而单位成本根据订单批量变化的规律如下:订单批量小于500个产品单位,单位成本为1
2、元;订单批量在500999个产品单位之间,单位成本为0.80元;订单批量大于等于1000个产品单位,单位成本为0.60元;在这种情况下,最佳的订单批量是多少?3 .C公司生产中使用的甲零件,全年共需耗用3600件。该零件既可自行制造也可外购取得。 如果自制,单位制造成本为10元,每次生产准备成本34. 375元,每日生产量32件。如果 外购,购入单价为9.8元,从发出定单到货物到达需要10天时间,一次订货成本72元。 假设该零件的每年单位储存成本为4元,一年按360天计算。要求通过计算确定C公司自 制和外购方案哪个方案更好。例题1例:某公司发现,针对某种产品的需求呈正态分布,需求的平 均值为每
3、年2000个产品单位,标准偏差为400个产品单位。产品的 单位成本为100欧元,订货至交货周期为3周。请计算在服务水平为 95 %的情况下的安全存货是多少?解:已知条件为6? =400个产品单位,L=3周查表,对应95%的服务水平,Z值等于L64,故可以得出:安全库存=2 xx L12 =1.64 x 400 x (3/52 ) 1/2 =158 (个产品 单位)例题2.某公司每年以每个单位30美元的价格采购6 000个单位的某种产品。 在整个过程中,处理订单和组织送货要产生125美元的费用,每个单位的产品所 产生的利息费用和存储成本加起来需要6美元。请问针对这种产品的最佳订货政 策是什么?解
4、:已知:需求D=每年6000个单位的产品单位购买价格:P=每个单位的产品30美元订货费用:5 =每个订单125美元库存保管费:H=每年每个单位的产品6美元=(2X125X6 000)/6) 1/2=500 (个产品单位)最佳的订单间隔时间:N=D/Q=6000/500=12订货周期:T = Q/D=1个月最佳订货政策是:批量为500单位,每年订货12次,每月订货一次.例题3.某种产品的需求为每个月100个产品单位。该产品的单位成本为50 元,订货成本为50元,库存持有成本(保管费用)为每年单位成本的25%,延 期交货的缺货成本为每年单位成本的40%。请你为该产品确定一个最佳存货政策。解:已知:
5、D=100X 12=1200 (个产品单位/年)P=50 元,S=50 元,H=50X0.25=12.5 (元/产品单位X年)B=50X0.40=20 (元)二(2X1200X50/12.5) 1/2X (1 + 12.5/20) 1/2= 125 (个产品单位). IWS B/、/、V=J-x= (2X1200X50/12.5) 1/2X 20/ (12.5+20) 1/2=77 (个产品单位)ti=v*/D=77/1200=0.064 (年)=33 (周)t2=(Q-V* )/D= (125-77) /1200=0.04 (年)=2.1 (周)t=tl+t2=3.3+2.1=5.4 (周)
6、每次订货125个产品单位,订货间隔周期为5.4周,最大库存为77个单位。规模确定方法一家公司要建设配送重心,向中心为25家店铺配送商品,每家店铺平均面积400 m2 , 每月销售量平均800箱商品。每箱长宽高尺寸为0.4 m、0.5 m、0.4m。假定未来销售增长 修正系数02配送中心商品平均周转次数为3次/月,最大堆垛高度为2m,存储面积修正 系数为0.3。计算该配送中心最多需要多少存储面积。解:ps 总销售量=25*800=20000 Q=( 1+0.2)*20000 =24000q=0.4*0.5*0.4=0.08m3 H=2mq =q/t=24000/3=8000P 存储空间需要量=8
7、000*0.4*0.5*0.4=64011?3St=P/H=640/2=320 S 配送中心总规模=(1+0.3) *320=416 nf 答:该配送中心最多需要416 nl,存储面积。一家公司仓库购入1200箱瓷砖,包装体积长0.5m,宽0.5m,高0.4m,毛重22kg,净 重20kg。用托盘多层堆码,托盘规格为L04mX 1.04m,托盘重量5kg。托盘的承压能力为 400kg,限装2层。库房地坪单位面积载荷为It。问:该批货物的储存最少需要多少托盘, 最少多少堆垛?实际占用多少面积?如果面积利用系数为0.7,则需仓库面积应该为多大? 解:按长宽计算每层托盘可放:(1.04/0.5) *
8、 (1.04/0.5) -2*2=4箱每个托盘可放:4*2层=8箱每个托盘总量=8*22+5=176+5=181 kgV库房地坪单位面积载荷It需要托盘数量:1200/8=150个按托盘承受压力可堆码:400/181=2.22层托盘存放面积=L04*L04* (150/2) =81.12 m2所需仓库面积=81.12/0.7=115.885处116 m2答:最少需要150个托盘,150/2=75堆垛,仓库面积116nl2某企业准备建一综合型仓库,其中就地堆码货物的最高储存量为600吨,仓容物资储存 定额为3吨/平方米,采用货架存放的货物最高储存量为90吨,货架长10米、宽2米、高3 米,货架的
9、容积充满系数为0.6,货架的储存定额为200公斤/立方米,若该面积利用率达到 75%,则该仓库需要多少货架?使用面积应为多少平方米? 解:堆码的面积=600/3=200 m2每个货架可能存放的重量=10*2*3*0.6*0.2=72所需货架数量=90/7.2=12.5g13个货架所占 S=10*2* 13=260 m2有效 S=200+260=460 m2使用面积=460/0.75=613.333 约等于 614 m2答:该仓库需要13个货架,使用面积为614 nl,(1)测定配送及储存商品总量Q = (l + d)psQ为总的配送/储存商品数量(各店铺总销售量)P为单位面积销售量S为各店铺总
10、的营业面积。d为销售量增长变化的修正参数(一般大于0);例:假定20家店铺,s=10万m2, p=2件/m2 ,=0.2总销售量=10万X 2=20万件总配送量=总销售量=(1+0.2) X 20万=24 (万件)(2)确定配送中心总规模。q平均商品配送/储存量Q为商品配送量(总周转量)T为平均周域次数 例了假定20家店铺,s=10万m2, p=2件/m2 ,=0.2各店铺总销售量=10万X 2=20 (万件)配送/储运商品量=(1+0.2) X 20万=24 (万件)假定T=6次/月,贝IJ=24/6=4 (万件)P = Qqp为储存空间需要量s,qPHS = (l + 8)为平均商品占有空
11、间(单位商品空间占有)St为仓库实际储存面积H商品平均堆码高度面积修正系数(考虑各功能区的比例)例:假定T=6次/月,=24/6=4 (万件)彳发定 q=0.4X0.4X0.5=0.08m3 , H=2m则 P=4 万X0.08=3200(m3) St =3200/2=1600 (m2)假定 =0.2,则 S=(1+ e ) St = (1+0.2) 1600=1920 ( m2 )题中配送中心的面积为1920 m2仓库面积计算例题:某平房仓库进8000箱力波啤酒,包装体积长0.3m,宽0.3m,高0.4m,毛重12kg,净重10kg, 用托盘单层堆码,托盘规格为L04m义1.04m(托盘重量
12、不计),库房地坪单位面积载荷为It, 包装的承压能力为50kg,可用高度为3m。问:该批货物的储存需要多少托盘,至少需要多 少面积?如果面积利用系数为0.7,则需仓库面积应该为多大?解:按可用高度计算可堆码:3 + 0.4=7.5箱。按包装承受压力计算可堆码4箱,因此以4箱计算。按宽计算每个托盘每层可放:(1.044-0.3)X(1.044-0.3)3.5X3.53X3=9箱。每个托盘可放箱:4X9=36箱。每个托盘总重量=36X12=432kg,小于库房地坪单位面积载荷13因此本方案可行。需要的托盘数量:8000 + 36=222.2弋223个存放面积=1.04 X 1.04 X 223=2
13、41.20m2所需仓库面积=241.20 + 0.7=344.57m2答:略如考虑托盘堆垛,也可以计算仓库面积 例2:某配送中心建一综合型仓库,计划用两种储存方法:一是就地堆码,其货物的最高储存量为 1200吨,这种货物的仓容物资储存定额是5吨/平方米;另一种是货架储放,其货物最高 储存量为630吨,货架长8米、宽1.5米、高4米,货架容积充满系数为0.7,货架储存定 额是150公斤/立方米,若该库的面积利用系数是05则需要货架多少?设计此仓库的有 效面积是多少?使用面积是多少?解:堆码的面积=总量/储存定额=1200 / 5 = 240平方米每个货架可能存放的重量=货架体积*容积系数*储存定
14、额=(8*15*4) *0.7*0.15 = 5.04 吨所需货架数量=货架储存总量/每个货架可存重量=630 / 5.04=125个货架所占面积=每个货架地面积大货架数量=8* 1.5* 125 = 1500平方米有效面积=堆码的面积+货架所占面积= 240+1500= 1740平方米使用面积=有效面积/面积利用系数=1740 / 0.5 = 3480平方米配送路线优化方法在物流系统优化技术中,还有一类重要的优化技术就是对配送中心配送路线优化技术。 随着配送中心的广泛使用,作为直接影响配送中心的运营成本与效率的配送路线规划问题日 益引起人们的重视。在很多批发零售型配送中心的日常配送活动中,配
15、送中心的车辆一次要 顺序给多个用户配送货物,配送完所有货物后再返回到配送中心。另外一些中心配送中心向 所属配送网络中多个子配送中心配送货物也属于此类型。这些问题大致可以归结为基本问题 中的旅行商问题和中国邮递员问题。一、旅行商问题旅行商问题可以总结为一个推销员从城市1出发到其他城市中去,每个城市他去一次, 并且只去一次,然后回到城市1,问他如何选择行程路线,从而使总路程最短?解决旅行商问题的算法目前已经有多种。下面主要介绍两种:最邻近法和节约算法。二、中国邮递员问题中国邮递员问题可以总结为“一个邮递员每次送信,从邮局出发,必须至少依次经过 它负责投递范围的每一条街道,待完成任务后仍然回到邮局,
16、问他如何选择投递路线,从而 使自己所走的路程最短? ”为了说明这类问题的具体解法,首先需要了解一下一笔画问题和 欧拉图。(1)给定一连通多重图G,若存在一条链,过每边一次,且仅过一次,则这条链称为欧 拉链。若存在一个简单圈,过每边一次,称这个圈为欧拉圈,一个图若有欧拉圈,则称为欧 拉图。显然,如果一个图若能一笔画出,则这个图必定是欧拉圈或含有欧拉链。(2)给定下列定理及推论。定理:连通多重图是欧拉图,当且仅当G中无奇点。以点V为端点的边的个数称为V 的次,次为奇数的点称为奇点。在任一个图中,奇点的个数为偶数。推论:连通多重图G有欧拉链,当且仅当G中恰有两个奇点。如果某邮递员所负责范围内,街道中
17、没有奇点,那么他可以从邮局出发,走过每条街 道一次,且仅一次,最后回到邮局,这样他所走的路线就是最短路线。对于有奇点的街道, 它就必须在某条街道上重复走多次。在下面的图 7-24 中,邮递员可以按 VI -V2-V4 -V3-V2-V4 -V6-V5-V4-V6 -V5-V3-V1, 结果V2, V4, V4 , V6, V6 , V5三条边各重复走一次。如果按照另外一条路线V1-V2 -V3.V2- V4-V5-V6-V4-V3-V6-V5-V3-V1,则V3, V2,V3, V5各重复走一次。显然两种 走法的总路程差就等于重复边的总权数之差。因而如果我们把这些重复边加在原来的图上, 构成新
18、图7-25和7-26,原来的问题就转化为在含有奇点的图中增加一些重复边,并且使重 复边的总权数最小。这是中国邮递员问题的基本解决思路。图7-24邮递员行走路线图1图726邮递员行走路线图3下面用一个例子来说明中国邮递员问题的具体解决步骤。一般把使新图不含有奇点而 增加的重复边称为可行方案,使总权数最小的可行方案称为最优方案。(1)第一个可行方案的确定方法。因为在任何一个图中,奇点的个数都是偶数,所以如 果图中有奇点,就可以将它们配成对。另外,又因为图是连通的,所以每一对奇点之间必有 一条链,我们把这条链的所有边作为重复边加到图中去,则新图中必无奇点,这样就得到第 一个可行方案。图7-27是一个
19、街区的路线图,图中有4个奇点,V2, V4, V6和V8。先将它们分为2 对,假设V2和V4为一对,V6和V8为一对。V8图727街区路线图然后在连接V2和V4的几条链中任选一条,例如取(V2, V|, v8, v7, v6, v5, v4), 分别把边V2, Vi, Vi,V8, V8, V7, V7, V6, V6, V5, V5, V4作为重复边加到 图中去,得到图7-28。图7-28初始可行方案由于图7-28没有奇点,因此它是一个欧拉图。重复边的总权数2W12+W23+2W45+2W56+W67+W78+2W8=5 1 0(2)调整可行方案,使重复边总长度下降。首先可以看出,如果去掉图
20、7-28中(V2, %)上的两条重复边,该图中仍然没有奇点,方案仍为可行方案,因此去掉这两条重复边。 同理,Vi,V8, V6, V5, V5, V4上的重复边也可以去掉。一般情况下,如果边(M,Vj)上有两条或两条以上的重复边时,我们可以通过去掉 其中的偶数条,优化可行方案。另外,在最优方案中,图的每一边上最多有一条重复边,并 且图中每个圈上的重复边的总权数不大于该圈总权数的一半。这样,图7-28可以调整为下面图7-29,重复边总权数下降到21。图7-29可行方案调整图1前边我们是去掉了一些重复边,下面我们再给原来没有重复边的边上加上一些重复边, 图中仍然没有奇点,方案仍为可行方案,如果根据
21、图中每个圈上重复边的总权数不大于该圈 总权数的一半的原则再对这些重复边进行调整,将会得到一个总权数下降的可行方案。上面图7-29中圈(V2,V3, V4, V9, V2)的总长度为24,但重复边的总权数为14, 大于圈的总权数的一半,因此可以进行再调整。以V2, V9, V9, V4上的重复边代替V2, V3, V3, V4上的重复边,重复边长度可继续下降到17,见图7-30。图7-30可行方案调整2(3)判断最优方案的标准。因为我们已经知道,在最优方案中,图的每一边上最多有一 条重复边,并且图中每个圈上的重复边的总权数不大于该圈总权数的一半。所以如果一个可 行方案满足上述两个条件,我们可以断定这个可行方案是最优方案。检查上面图7-30中圈(Vi,V2,V9, V6, V7, V8, Vi),圈的总权数为24,但重复边 的总权数为13,大于圈的总权数的一半,因此还不是最优方案,可以继续进行调整。经调整,得到图7-30,重复边的总权数下降为15。经检查,图7-31满足上述两个条件,因此已经是最优方案,图中的任意一个欧拉圈就 是最优路线。上述方法也通常被称作奇偶点图上作业法。图7-31最优方案
限制150内