2020--2021年上海中考数学试卷及解析.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2020--2021年上海中考数学试卷及解析.pdf》由会员分享,可在线阅读,更多相关《2020--2021年上海中考数学试卷及解析.pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中抑2021年上海中考数学试卷一、选择题(本大题共6 题.每题4 分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,有理数是()去2.下列单项式中,at 的同类 项 是():A.a 3 b 2 B.3 a 2 b 3 C.a2b D.a b33.将函数 丫=2*2+6 乂+田?0)的图像向下平移两个单位,以下说法错误的是()A.开口方向不变 B.对称轴不变B.y 随 x 的变化情况不变 D.与 y 轴的交点不变4.商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.点 C在
2、圆A外,B.点 C在圆A外,C.点 C在圆A上,D.点 C在圆A 内,点 D在圆A 内点 D在圆A外点 D在圆A内点 D在圆A外二、填 空 题(本大题共12题,每题4 分,满分48分)【请符结果直接填入答纸的相应位置上】7.计算:X7?X2-8.已知f(x)=9,那么 f(J J)二.9.已知 Jx+4=3,则 x=.10.不等式2xT2 V 0 的解集是.1 1.7 0 的余角是 .12.13.14.若一元二次方程2xJ3x+c=0无解,则c 的取值范围为已知数据1、1、2、3、5、8、13、21、3 4,从这些数据中选取一个数据,得到偶数的概率为.已知函数丫=匕的图像经过二、四象限,且不经
3、过(7,1),请写出一个符合条件的函数解析则点C、D与圆A式 1 5.某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5 元/千克,现以8 元/千克卖出,挣得 元.找出数加16如图所示,已知在梯形ABCD中,ADZ/BC,鼠 皿=2.,贝SABCD 2 SABCO17.六个带3 0 角的直角三角板拼成一个正六边形,直角三角板的最短边为1,则中间正六边形的面积为18.定义:平面上一点到图形的最短距离为d,如图,0P=2,正方形ABCD的边长为2,0 为正方形中心,当正方形ABCD绕 0 旋转时,d 的取值范围是.三、解 答 题(本大题共7题,满分78分)19.计
4、算:9 1 口一内I-2 L小i x+y =31 6.解方程组:|,2?X-4y02 4.已知抛物线y=a x、c(a?0)经过点 P(3,0)、Q(l,4).(1)求抛物线的解析式;(2)若点A在直线P Q上,过点A作A B d _ x轴于点B,以A B为斜边在其左侧作等腰直角三角形A B C,421.如图,已知在 a A B D 中,A C B D,B C=8,C D=4,c o s?A B C B F 为 A D 边上的中线.当Q与A重合时,求C到抛物线对称轴的距离;若C落在抛物线上,求C的坐标.(1)求A C的长;求t a n/F B D的值.22.现在5G手机非常流行,某公司第一季度
5、总共生产8 0万部5G手机,三个月的生产情况如下图.(1)求3月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多9 5MB,下载一部1000MB的电影,5 G比4G要快19 0秒,求5G手机的下载速度.25.如图,在四边形A B C D中,A D B C,Z A B C=9 0,A D=C D,0是对角线A C的中点,联结B 0并延长交边C D或边A D于点E.当点E在边C D上,求证:D A CS/0B C;若B E_ L C D,求U的值;BC(2)若 D E=2,0E=3,求 C D 的长.23.已知:在圆0内,弦A D与弦B C相交于点G,A D=C B,M、N分别是C
6、 B和A D的中点,联结MN、0G.(1)证明:OG J L MN;(2)联结A B、A M、B N,若B N 0G,证明:四边形A B NM为矩形。第3 页第4 页将二次函数图像向下平移,不改变增减性,故C对;2021年上海中考数学试卷逐题解析版一、选择题本大题共6题.每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,有理数是()而抑磔忠:考点】有理数.1【解答】解:整数与分数统称为有理数;无限不循环小数为无理数,常见的无理数有n和开方开不尽I的数I(力)无理数,故/错 误;(B)无理数,故4错误;(。原式=1
7、,故C对:()无理数,故。错误;故选:C.:2 【点评】本题考查有理数的概念,解题的关键是抓住有理数和无理数的区别,注意带根号的要开不尽革 方才是无理数,无限不循环小数为无理数.如“,%,0.8 0 8 0 0 8 0 0 0 8-(每两个8之间依次多1个0)等形式.本题属于基础题型.1 2.下列单项式中,的同类项是()I A.a 3 b 2 B.3 a 2 b 3 C.a2b D.a b3 t考点】同类项.:【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这:两个单项式为同类项。由题意,字 母a的指数为2,字 母b的指数为3,根据同类项的定义,只 有B:
8、符合,故选:B.申【点泮】本题考查同类项的定义,解题时注意看清相同字母对应的指数,木题属于基础题型.3.将函数 丫=*2+6*+田?0)的图像向下平移两个单位,以下说法错误的是I():A.开口方向不变 B.对称轴不变:C.y随x的变化情况不变 D.与y轴的交点不变 【考点】二次函数的图象;二次函数的性质.【解答】解:将二次函数图像向下平移,不改变开口方向,故A对:将二次函数图像向下平移,不改变对称轴,故B对;抛物线与y轴交点坐标为(0,c),将二次函数图像向下平移,c变小了,交点坐标改变,故D错误;故选:D.【点评】本题考查了二次函数的性质以及二次函数的图象,利用二次函数的性质逐分析四个选项的
9、正误是解题的关键.4.商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2 kg/包 B.3 kg/包 C.妹g/包 D.5 kg/包【考点】频 数(率)分布直方图.【解答】解:由频数分布直方图可知,选 择1.5 2.5 kg/包的人数最多,对比四个选项只有2 kg/包在此范围,故选:A.【点评】本题主要考查频数分布直方图.5.如图,已知丽=6,A D =b,E为A B中点,则:+6=()2A.E C B.C E C.E D D.D E【考点】平行四边形的性质,平面向量.【解答】解:AB=a,故 上=曲 J.四边形A B C D是 平 行 四 边
10、 形,前 二 而=62,$+6 =丽+玩=葭,故选:A.2【点叶】此题考查了平面向量的知识、平行四边形的性质.注意掌握一:角形法则的应用是关键.6.如图长方形A B C D中,A B=4,A D=3,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是()A点C在圆A外,B.点C在圆A外,C.点C在圆A上,D.点C在圆A内,点D在圆A内点D在圆A外点D在圆A内点D在圆A外【考点】点与圆的位置关系,圆与圆的位置关系,勾股定理.【解答】解:两圆外切,圆心距等于半径之差的绝对值,设圆A的半径为R,则:AB=R-1,解出R=5,即圆A的半径等于5,VAB-4,BC=AD-3,由勾股定理可知AC=
11、5/.AC=5=R,AD=3R,点C在圆上,点D在圆内故选:C.【点评】本题考查了点与圆的位置关系、圆与圆的位置关系勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.二、填 空 题(本 大 题 共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7计 算:X?X2 -【考点】单项式除单项式.【解答】解:X7?X2 X(7-2)=X5,故 答 案 为x$【点评】本题考查了单项式与单项式相除,熟练掌握运算法则是解题的关键。8.已 知f(x)二 ,那么.【考点】函数值【解答】解:当x=6时,f(6)二二二2 6,故 答 案 为2 GV3【点评】本
12、题考查了函数值,把自变量的值代入函数解析式是解题关键.9.已知 VjTTZ=3,贝|J x=.【考点】无理方程【解答】解:而?=3,两 边 同 时 平 方,得:X+4=9,解 出:x=5经检验,*=5是方程的根:故答案为x=5.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.不 等 式2X-12V0的解集是.【考点】解一元一次不等式【解答】解:2 x-1 2 0,移项得:2 x 1 2,解 出:x 6,故答案为xV6【点评】本题考查的是一元一次不等式的解法.1 1.
13、7 0 的余角是 .【考点】余角【解答】解:两角度数之和为90,就说明这两个角互为余角。90-70=20,故答案为20【点评】如 果 两 个 角 的 和 是 直 角(90。),那 么 称 这 两 个 角 互 为 余 角 ,简 称”互余,也可以说其中一个角是 另 一 个 角 的 余 角。掌 握 余 角 的 概 念 是 解 决 本 题 的 关 键。12.若 一 元 二 次 方 程2x2-3x+c=O无 解,则c的取值范围为.【考点】根的判别式【解答】解:由题意,一元二次方程无解,则判别式=b+4acV 0,即:Q Q(-3)2-4仓 电c -,故答案为:c -8 8【点评】总结:一元二次方程根的情
14、况与判别式的关系:(1)Zk。方程有两个不相等的实数根:(2)=()0方程有两个相等的实数根(3)v O o 方程没有实数根.根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.已 知 数 据1、1、2、3、5、8、13、21、3 4,从 这 些 数 据 中 选 取 一 个 数 据,得到偶数的概率为.【考点】概率公式,偶数【解答】解.:在9个数据中,偶数有2、8、34共三个,所以得到偶数的概率为3:二1;,故答案为1:9 3 3【点出】此题考查了概率公式的应用与偶数的定义.解题时注意:概率=所求情况数与总情况数之比.14.已 知 函 数y=kx的 图 像 经 过 二、四 象
15、 限,且 不 经 过(-1,1),请写出一个符合条件的函数解析式.【考点】正比例函数的性质:正比例函数图象上点的坐标特征【解答】解:,函 数y=kx的 图 像 经 过 二、四象限.k 0,又 图像不经过(T,1)k 0,图像经过-、-:象限;k v o,图像经过二、四象限”是解题的关键.第7页第8页中抑.1 5.某 人 购 进 一 批 苹 果 到 集 贸 市 场 零 售,已经卖出的 苹果数量与售价之间的关系如图所J示,成 本 为5元/千 克,现 以8元/千 克 卖 出,挣 得 一 元.:【考点】一次函数图像及其应用I【解答】解:设 苹 果 数 量y与 售 价x之 间 的 函 数 关 系 为y=
16、k x+b(k ro),由 图 像 可 知:j5 k+b4 0 0 ,解 出 心-6 0,所以 y=-6 0 0 x+7 0 0 0,当 x=8 时,y=7 0 0 0-4 8 0 0=2 2 0 0 k g:f 10 k+b=10 0 0 f b=7 0 0 0 挣 得 的 钱 为:2 2 0 0千 克X (8-5)元/千 克=6 6 0 0元:故 答 案 为6 6 0 0郸 【点评】本题考察一次函数图像及其应用,根据图像列出方程解出一次函数表达式是解题的关键。卖出敷或元/千克16.如 图 所 示,已 知 在 梯 形A B C D中,A D/7 B C,区 皿=则 区 四SABCD 2 SA
17、BCD【考点】梯形,三角形面积比,“8”字型相似,比例的性质【解答】解:V A D/7 B C.A D O D*B C -O B由“同底或等高”可知:S 2二 处 二 _L,SABCD B C 2由比例 的性质 可知%=2B D 3 SZBOC _ B _ 2 -S e B D 37故答案为话【点评】本题考察了相似的基本模型,同底或等高”型三角形面积比的计算方法,灵活运用平行成比例,比例的性质是解题的关键。17.六 个 带30 角 的 直 角 三 角 板 拼 成 一 个 正 六 边 形,直 角 三 角 板 的 最 短 边 为1,则中间正六边形的面积为.【考点】正多边形,直角三角形的性质【解答】
18、解:由对称性及直角三角形的性质,可知:中间小正六边形的边长为1,根据正六边形的面积公式可得:八 6.2 3白S=6 X 14 1 2,故 答 案 为2【点评】灵活运用直角三角形的性质以及正多边形的对称性求面积是解题的关键。18.定 义:平 面 上 一 点 到 图 形 的 最 短 距 离 为d,如图,0 P=2,正 方 形A B C D的 边 长 为2,0为 正 方 形 中 心,当正方形A B C D绕0旋转 时,d的取值范围是.【考点】新定义,旋转【解答】解.:如图2,设A D的中点为E,那么点0与正方形上所有点的连线中,0 E最短,等 于l,0 A最大,等于J5;V 0 P=2为定值 当0
19、P经过点E时,d最大为1;当0 P经过点A时,d 最小为2企故答案为:2-0WdWl【点评】本题属于新定义,新定义的题在上海中考题意是关键。属常考题,理解三、解 答 题(本 大 题 共7题,满 分7 8分)19.计 算:9%i 虚I 2 L瓜【考点】实数的运算;分数指数轻$+11-6-2色【解答】解:=3+0-l-g?2 a=3+7 2-I-屈=2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运完律在实数范
20、围内仍然适用.20.解方程组:i x+y =31 2 2?X-4y0【考点】解二元二次方程组j x+y=3【解答】解:1 ,2;X-4y =0 由可得:(x+2y)(x-2y)=0,即:x+2y=0或 x-2y=0联 立 可得:T x=6 j x=2;联 立 可 得:ii y =-3 fy=i故原方程组的解为:i x=2.t x=6i 或;-(y =l fy =-3【点评】本题考察了二元二次方程组的解法,利用因式分解进行变形化简是解题关键。421.如 图,已 知 在 aA B D 中,A C B D,B C=8,C D=4,c o s?A B C B F 为 A D 边上的中线.5 求A C的
21、长;求t an/F B D的值.【考点】解直角三角形,中位线,勾股定理R C 4【解答】解:(1)c o s?A B C B O 8A B 5.AB=8X2=1 0,由勾股定理得:A C=64(2)过F作F G J _C D于G点,A C=6,C D=4,由勾股定理得:A D=2加B F为A D边上的中线 F为A D中点V F G 1B D,A C 1B D F G A C,F G为A A C D的中位线AG为C D中点B G=B C+C G=8-2=10,F G=-A C=32F G 3A t an ZF B D=B G 10【点评】此题考查了解宜角角形,中位线线的性质,熟练掌握勾股定理和锐
22、角三角比是解木题的关键.22.现 在5G手机非常流行,某公司第一季度总共生产8 0万 部5G手机,三个月的生产情况如下图.(D求3月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多9 5M B,下载 一 部10 0 0 M B的电影,5G比4G要 快19 0秒,求5G手机的下载速度.第“页【考点】扇形统计图,代数方程的应用【解答】解:(I)由扇形统计图可知:3月份生产的手机占整个第一季度的百分比为:1-30%-25%=45%故3月份生产手机:8 0 X45%=36(万部)答:3月份生产了 36万部手机。(2)设5G手机的下载速度为x(M B/秒),则4G手机的下载速度为x-9
23、5(M B/秒),由题意可得:10 0 0 10 0 0 -=19 0 x-9 5 x解出:x=10 0或x=-5(舍)经检验:x=10 0是方程的根,所 以x=10 0(M B/秒)答:5G手机的下载速度为10 0 (M B/秒)【点、评】此题考查了 扇形统计图,分式方程的应用,解题的关键是熟练掌握解分式方程的步骤,解分式方程注意要检验.23.已知:在 圆。内,弦A D与 弦B C相交于点G,A D=C B,M、N分 别 是C B和A D的中点,联 结M N、0 G.(1)证 明:O G _L M N;(2)联 结A B、A M、B N,若B N O G,证明:四边形A B N M为矩形。A
24、【考点】圆,矩形的判定【解答】解:联 结0 M,0 N ,在圆0中,弦A D=C B,M、N分 别 是C B和A D的中点A 0 M=0 N,O M B C,O N A D,G O为公共边A R t A M O G R t A N O GA G M=G N 点0和 点G都在 线 段M N的垂直平分线上A 0 G 1M N(2)V A D=C B,M、N分 别 是C B和A D的中点A A N=B M,*/G M=G N.A G=B GV B N/7 0 G,O G M NA B N M N 在 R lZB M N 中,M G=G N/.N B M N二N G N M,V ZG N M+ZG N
25、 B=9 0 ,ZB M N+ZG N M+ZG N B+ZM B N=18 0 N G N B:N M B N.M G=G N=G B.*.A G=G N=M G=B G四边形A B N M为矩形【点评】本题考查了圆的性质,圆心角、弧、弦之间的关系,线段垂直平分线的性质,矩形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.已知抛物线 y=ax?+c(a?0)经过点 P(3,0)、Q(l,4).(D求抛物线的解析式;第12页若点A在直线P Q 上,过点A作A B J _x轴于点B,以AB为斜边在其左侧作等腰直角三角形ABC,当Q 与A 重合时,求C 到抛物线对称轴的距离
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 上海 中考 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内