2023年浙江省舟山市中考数学一模试卷(含答案解析).pdf
《2023年浙江省舟山市中考数学一模试卷(含答案解析).pdf》由会员分享,可在线阅读,更多相关《2023年浙江省舟山市中考数学一模试卷(含答案解析).pdf(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年浙江省舟山市中考数学一模试卷学校:姓名:班级:考号:一、单选题1.2022年北京冬奥会3 个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是()A.3.2xlO6 B.3.2xlO52.下列运算正确的是()A.3a2 a2=3C.3.2xlO4 D.32x10B.(a+b)2=a2+b2C.(-3a/2)2=-6a2b4D.a-a =1(6 Z 丰 0)3.已知样本数据:3,2,1,7,2,下列说法不正碘的是()A.平均数是3 B.中位数是1 C.众数是2 D.方差是4.44.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,
2、与“国,字所在面相对的面上的汉字是()A.厉 B.害C.了D.我5.九章算术是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7 天到北海;大雁从北海起飞,9 天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x 天相遇,根据题意可列方程为()A.+=l B.卜=1 C.(9-7)x=l D.(9+7)x=l6.数形结合是解决数学问题常用的思想方法.如图,一次函数=+6(鼠 6 为常数,且左C 0)的 图 象 与 直 线 都 经 过 点 A(3,1),当时;x 的取值范围是
3、()C.Xl7.如图,圆 O 是R tZ4?C的外接圆,ZACB=90,ZA=2 5 ,过点。作圆。的切线,交A 8的延长线于点。,则一。的度数是()C.55D.658.如 图 1,直线 乙,直线4 分别交直线4,4 于点A,8.小 嘉 在 图 1 的基础上进行尺规作图,得到如图2,并探究得到下面两个结论:四边形A B C D是邻边不相等的平行四边形;四边形A B C D是对角线互相垂直的平行四边形.下列判断正确的是()A.都正确B.错误,正确C.都错误D.正确,错误9.如图,已知正方形ABCO的边长为4,E,F 分另IJ为 AB,C 边上的点,且 E F 8C,G 为 EF上一点,且GF=1
4、,M,N 分别为GO,EC的中点,则MN的 长 为()A号-3B.94c ID.152试卷第2 页,共 7 页1 0 .已知抛物线y =a y 2+6 x+c 的图象与x 轴的正半轴交于点A(p,0),点B(g,0);与 y轴的正半轴交于点C(O,。,且。=厂,q=3 p,那么的值为()二、填空题1 1 .分解因式:xy-y2=.1 2 .若一个正多边形的内角和等于外角和的两倍,则 该 正 多 边 形 的 边 数 是.1 3 .在网络课程学习中,小蕾和小丽分别在 好玩的数学 美学欣赏 人文中国中随机选择一门,两人恰好选中同一门课 程 的 概 率 为 一.1 4 .如图,在二A 3 C 中,。是
5、8c的中点,以点。为位似中心,作 的 位 似 图 形D E F .若点A的对应点。是 的重心,则:A B C 与.Q E F 的位似比为.1 5 .如图,在 A B C 中,Z AC B=90,AC=B C=2,将 A 8 c 绕 AC的中点。逆时针旋转9 0。得到 A B C,其中点B的运动路径为8,则 图 中 阴 影 部 分 的 面 积 为.B1 6 .如图,在 A B C 中,Z C =9 O,A C =8 c m,B C=6 c m.动点尸沿线段AC以5 c m/s 的速度从点A向点C运动,另有一动点。与点P同时出发,沿线段BC以相同的速度从点8向点C运动.作阳 _ 1 _ 钻 于 点
6、 O,再将绕P D的中点旋转1 8 0。,得到 4 O P;作Q E L A B 于点 再将a B O E 绕 Q E的中点旋转1 8 0。,得 到B E Q.设点P的运动时间为x s.(1)如图当点4 落在8 C 边上时x 的值为(2)如图,在点尸,。运动中:当 点 在,BE。内部时x 的取值范围为三、解答题1 7.(1)计算:卜 2|+(g-2/+tan45。;(2)解不等式:2 x-3(x+l)2 l1 8.在学习一元二次方程的根与系数关系一课时老师出示了这样一个题目:已知关于x的方程/一(2 加一1)+病=0 的两实数根为X”巧,若(西+1)(9+1)=3,求,的值.波波同学的解答过程
7、如框:解:(X+x2=2 机-1由题意可知:j再飞二疝.(%1 +1)(刍+1)=%+%+工2 +1 =3.w2+(2/n-1)+1 =3解得:机=-3或机=1波波的解法是否正确?若正确请在框内打“小;若错误请在框内打“x”,并写出你的解答过程.1 9.观察下列各式:=6 =3哙;6=4 5,(1)请观察规律,并写出第个等式:;(2)请用含n(nl)的式子写出你猜想的规律:;试卷第4 页,共 7 页(3)请 证 明(2)中的结论.2 0.某市为了解八年级学生视力健康状况,在全市随机抽查了 4 0 0 名八年级学生2 0 2 2年初的视力数据,并调取该批学生2 02 1 年初的视力数据,制成如下
8、统计图(不完整):400名八年级学生2022年初视力统计图该批400名学生2021年青少年视力健康标准类别视力健康状况A视力2 5.0视力正常B视力=4 9轻度视力不良C4.6视力 W 4.8中度视力不良D视力W 4.5重度视力不良根据以上信息,请解答:分别求出被抽查的400名学生2 02 1 年初视力正常(类别A)的人数和2 02 2 年初轻度视力不良(类别8)的扇形圆心角度数.(2)若 2 02 2 年初该市有八年级学生8000人,请估计这些学生2 02 2 年初视力正常的人数比2 02 1 年初增加了多少人?(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生
9、2 02 2 年初视力不良率是否符合要求?并说明理由.2 1 .如 图 1 是一种可折叠的台灯,图 2是台灯的结构图,4 c是可以绕点A旋转的支架,点 C为灯泡的位置,灯罩可绕点C旋转.量得4?=1 0c m,AC=2 0c m,此时Z A B 尸=3 7。,S.CE1DE./(1)当N A =9 0。,8 LAC时(图 2),求灯泡C所在的高度;在(1)的条件下,旋转支架A C (A8 固定).当NA从9 0。变成5 7。(图 3)时,且的度数不变,C E _ L/y,求的值.(结果精确到0.1,参考数据:s i n 3 7 0.60,c o s 3 7 0.80,t a n 3 7 0.7
10、5,s i n 2 0 0.3 4,c o s 2 0 0.9 4,t a n 2 0 0.3 6)图322 2.已知4 是反比例函数y =(x0)图象上一个动点,过点A作 x 轴的平行线,交x直线y =-2 x 于点8,以线段4 8 为一条对角线,作。4c B (。为坐标原点).(1)如图,当点C在 y 轴上时,请证明 O A C B 是菱形,并求点C的坐标;(2)如图,当。4 c B 是矩形时,求点8,C的坐标.试卷第6 页,共 7 页2 3.已知二次函数卜=0 +加+。(4 力0).若。=T,且函数图象经过(0,3),(2,-5)两点,求此二次函数的解析式;并根据图象直接写出函数值V 2
11、 3 时自变量x的取值范围;在(1)的条件下,已知抛物线y =x 2+f e r+c(a w 0)与 x 轴交于A,B两 点(点 A在点 8 的左侧),将这条抛物线向右平移机(相 0)个单位,平移后的抛物线于x 轴交于C,。两 点(点 C在点。的左侧),若 B,C是线段AO的三等分点,求机的值.(3)已 知a=b=c=,当x=p,q(p,是实数,p*q)时,该函数对应的函数值分另 U 为 P,Q.若 0+夕=2,求证P+Q 6.2 4.如图,在中,NAB C的平分线交AC于点E,以A为圆心,A E 为半径作A 交 B E于点F,直线A B 交 A于 G、H 两点,A F 的延长线交B C 于点
12、。,作E KA.B C,垂足为点K.(1)求证:A D 1 BC;(2)求证:B F A D(3)当=且=时,求证:B F A C参考答案:1.B【分析】根据科学记数法“把一个大于10的数表示成ax 10”的形式(其中。是整数数位只有一位的数,即 a 大于或等于1 且小于10,是正整数),这样的记数方法叫科学记数法即可得.【详解】解:320000=3.2x10s.故选B.【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法.2.D【分析】根据整式的加减乘除、完全平方公式、-=,(。二0)逐个分析即可求解.【详解】解:选项A:3a2-a2=2a2,故选项A 错误;选项B:(a+b)2=a2+
13、2ab+b2 f故选项B 错误;选项C:(-3/)2=9 2/,故选项c 错误;选项D:a-a-=a-=K a 0),故选项D 正确.a故选:D.【点睛】本题考查整式的加减乘除及完全平方公式、负整数指数基等运算公式,熟练掌握公式及运算法则是解决此类题的关键.3.B【分析】根据平均数、中位数、众数、方差的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】解:A.平均数为:1(3+2+1+7+2)=3,正确,故此选项不符合题意;B.把数据按从小到大排列为:1,2,2,3,7,中间的数是2,所以中位数为2,故中位数是 1错误,故此选项符合题意;C.2 出现次数最多,故众数为2,正确,故此选项
14、不符合题意;D.方差为:?=1(3-3)2+(2-3)2+(1-3)2+(7-3)2+(2-3)2=4.4,正确,故此选项不符合题意;故选:B.【点睛】此题考查了平均数、中位数和众数、方差,用到的知识点:一组数据中出现次数最答案第1 页,共 19页多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,的平均数为嚏=-(x,+X2+K+X),n则方差$2=;-x J+N-x
15、 J+.+-x j .4.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.A【分析】设总路程为1,野鸭每天飞;,大雁每天飞,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.【详解】解:设经过x 天相遇,根据题意得:(I )x=1 ,7 9故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,本题的本质
16、是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.6.A【分析】根据不等式区的解集即为一次函数图象在正比例函数图象下方的自变量的取值范围求解即可【详解】解:由函数图象可知不等式依+匕的解集即为一次函数图象在正比例函数图象答案第2 页,共 19页下方的自变量的取值范围,.当时,x 的取值范围是x 3,故选A.【点睛】本题主要考查了根据两直线的交点求不等式的解集,利用图象法解不等式是解题的关键.7.A【分析】首先连接0 C,由NA=25。,可求得N 5O C 的度数,由 是 圆。的切线,可得O C V C D,继而求得答案.圆。是 RtAABC 的外接圆,Z A C B
17、=90,A8是直径,ZA=25,,ZBOC=2ZA=50,是圆。的切线,O C Y C D,:.ZD=90-Z B O C =40.故选:A.【点睛】本题考查了切线的性质,圆的切线垂直于过切点的半径,所以此类题若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.8.B【分析】根据小嘉的行尺规作图,可以得到:N A B D=N C B D,A B=BC,再证明四边形A8CZ5是菱形,再进行判断即可.【详解】根据小嘉的行尺规作图,可以得到:Z A B D=Z C B D,AB=BC,:4 4,ZADB=Z C B D,NABD=N C B D,答案第3 页,共 19页:.ZABD=ZADB
18、,:.AB=AD,:AB=BC,:.AD=BC,,四边形A B C D是平行四边形,:AB=BC,,四边形ABC。是菱形,.四边形A B C D是对角线互相垂直的平行四边形.错误,正确故选:B.【点睛】本题考查了作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质.9.C【分析】作于,NQ_LCD于。,于 K,先证明四边形BC/石 为矩形得到EF=B C =4,根据平行线分线段成比例定理和相似三角形的性质得到要=黑=瞿=:,则=D H:D F,同理可得NQ=2,C Q =c F ,所以G F D G D F 2 2
19、 2 2H Q =g c D =2,易得四边形A/KQH为矩形,贝 lJKQ=K H=g,M K =HQ=2,然后在RtAMNK中利用勾股定理计算MN的长【详解】作于H,NQJLCD于。,MK_LNQ于 K,则 四 边 形 为 矩 形,如 四边形ABCD为正方形,A ZBCD=90,CB=CD=4,:EF/BC,,EFJ.CD,;四边形BCFE为矩形,答案第4 页,共 19页:.EF=BC=4tA M H/E F,NQ/EF,V MH/GF,M 点为。G 的中点,.DM=DH=-,/DMHs4ADGF,DG DF 2.MH DM DH 1 ntI“1 ,GF DG DF 2 2同理可得NQ=g
20、E F=2,CQ=C F,:.HQ=(DF+CF)=CD =2,.四边形MKQH为矩形,:.KQ=KH=;,MK=HQ=2,1 3/.NK=NQ-KQ=2一 =-,故选:C.【点睛】本题考查了平行线分线段成比例,正方形的性质,勾股定理,添加辅助线构造平行线,利用中点结合比例关系求线段长度是解决问题的关键.10.B【分析】由于二次函数丫=4+桁+。的图象与x 轴的正半轴交于点A(p,O),点3(9,0),与V的正半轴交于点C(0,r)且 P=J q=3 p,由此得到。=,q=3p=3 r,接着把A(r,0),B(3r,0),C(0,r),代入解析式即可得到方程组,解方程组即可求解.【详解】解:由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 浙江省 舟山市 中考 数学 试卷 答案 解析
限制150内