二次函数动轴与动区间问题 2中学教育中考_中学教育-中学课件.pdf
《二次函数动轴与动区间问题 2中学教育中考_中学教育-中学课件.pdf》由会员分享,可在线阅读,更多相关《二次函数动轴与动区间问题 2中学教育中考_中学教育-中学课件.pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 二次函数在闭区间上的最值 一、知识要点:二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.设f xaxbxc a()()20,求f x()在xmn,上的最大值与最小值。分析:将f x()配方,得顶点为baacba2442,、对称轴为xba2 当a 0时,它的图象是开口向上的抛物线,数形结合可得在m,n上f x()的最值:(1)当 bamn2,时,f x()的最小值是fbaacbaf x 2442,()的最大值是f mf n()()、中的较大者。(2)当 bamn2,时 若bam2,由f x()在 mn,
2、上是增函数则f x()的最小值是f m(),最大值是f n()若nba2,由f x()在 mn,上是减函数则f x()的最大值是f m(),最小值是f n()当a 0时,可类比得结论。二、例题分析归类:(一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。1.轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例 1.函数yxx 242在区间0,3上的最大值是_,最小值
3、是_。图 1 练习.已知232xx,求函数f xxx()21的最值。学习必备 欢迎下载 图 2 2、轴定区间变 二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。例 2.如果函数f xx()()112定义在区间tt,1上,求f x()的最小值。图 1图 2图 8 例 3.已知2()23f xxx,当1()xtttR,时,求()f x的最大值 。二次函数的区间最值结合函数图象总结如下:当a 0时)(212)()(212)()(21max如图如图,nmabnfnmabmfxf)(2)()(2)2()(2)()(543m i n如图如图如图,mabmfn
4、abmabfnabnfxf 的相对位置关系的讨论一般分为对称轴在区间的左边中间右边三种情况设求在上的最大值与最小值分析将配方得顶点为对称轴为当时它的图象是开口向上的抛物线数形结合可得在上当时的最小值是的最值的最大值是中的较大者当时归类一正向型是指已知二次函数和定义域区间求其最值对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键此类问题包括以下四种情形轴定区间定轴定区间变轴变区间定轴变区间变轴定区间定二次函数是给定的练习已知求函数的最值图学习必备欢迎下载图轴定区间变二次函数是确定的但它的定义域区间是随参数而变化的我们称这种情况是定函数在动区间上的最值定义在区间例如果函数上求的最小值
5、图图图例已知当时求的最大值二次函数学习必备 欢迎下载 当a 0时)(2)()(2)2()(2)()(876max如图如图如图,mabmfnabmabfnabnfxff xf mbam nf nbam n()()()()()()()min,如图如图212212910 3、轴变区间定 二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。例 4.已知x21,且a 20,求函数f xxax()23的最值。解。图 3 例 5.(1)求2f(x)x2ax1在区间-1,2上的最大值。(2)求函数)(axxy在 1,1x上的最大值。4.轴变区间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数动轴与动区间问题 2中学教育中考_中学教育-中学课件 二次 函数 区间 问题 中学 教育 中考 课件
限制150内