北师大版(2019)数学必修第一册:7.2.2《古典概型的应用》教案.docx
《北师大版(2019)数学必修第一册:7.2.2《古典概型的应用》教案.docx》由会员分享,可在线阅读,更多相关《北师大版(2019)数学必修第一册:7.2.2《古典概型的应用》教案.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 古典概型的应用【第一课时】【教学目标】1知识与技能:(1)进一步正确理解古典概型的两大特点,能会从实际问题中识别古典概型模型.(2)进一步掌握古典概型的概率计算公式:P(A)=.2过程与方法:能运用古典概型的知识解决一些实际问题,通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;能运用树状图复杂背景的古典概型基本事件个数的计算3情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.【教学重难点】正确理解掌握古典概型及其概率公式,古典概型中计算比较复杂的背景问题【教学过程】一、温故知新1古典概型的
2、概念(1)试验的所有可能结果(即基本事件)只有有限个,每次试验只出现其中的一个结果;(2)每一个结果出现的可能性相同.2古典概型的概率公式3列表法和树状图二、合作探究1在古典概型中,同一个试验中基本事件的个数是不是永远一定的呢?2同样掷一粒均匀的骰子(1)若考虑向上的点数是多少,则可能出现1,2,3,4,5,6点,共有6个基本事件.(2)若考虑向上的点数是奇数还是偶数,则可能出现奇数或偶数,共2个基本事件.(3)若把骰子的6个面分为3组(如相对两面为一组),分别涂上三种不同的颜色,则可以出现3个基本事件.从上面的例子,可以看出同样一个试验,从不同角度来看,建立概率不同模型,基本事件可以各不相同
3、.一般来说,在建立概率模型时把什么看作是基本事件,即试验结果是人为规定的,也就是说,对于同一个随机试验,可以根据需要,建立满足我们要求的概率模型3考虑本课开始提到问题:袋里装有2个白球和2个红球,这4个球除了颜色外完全相同,4个人按顺序依次从中摸出一个球.试计算第二个人摸到白球的概率.用A表示事件“第二个摸到红球”,把2个白球编上序号1, 2;2个红球也编上序号1,2模型1:4人按顺序依次从中摸出一个球的所有结果,可用树状图直观表示出来总共有24种结果,而第二个摸到红球的结果共有12种.P(A)=12/24=0.51221211222112222121211111122222212211111
4、112222111111211121112222模型2利用试验结果的对称性,因为是计算“第二个人摸到红球”的概率,我们可以只考虑前两个人摸球的情况,这个模型的所有可能结果数为12,第二个摸到白球的结果有6种:P(A)=6/12=0.51122112221121122模型3只考虑球的颜色,4个人按顺序摸出一个球所有可能结果模型3的所有可能结果数为6,第二个摸到白球的结果有3种:P(A)=3/6=0.5模型3只考虑第二个人摸出的球情况他可能摸到这4个球中的任何一个,第二个摸到白球的结果有2种P(A)=2/4=0.5评析:法(一)利用树状图列出了试验的所有可能结果(共24种),可以计算4个人依次摸球
5、的任何一个事件的概率;法(二)利用试验结果的对称性,只考虑前两个人摸球的情况,所有可能结果减少为12种法(三)只考虑球的颜色,对2个白球不加区分,所有可能结果减少6种法(四)只考虑第二个人摸出的球的情况,所有可能结果变为4种,该模型最简单!【例】将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果? (2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解:(1)将骰子抛掷1次,它出现的点数有这6中结果。先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又都有6种可能的结果,于是一共有种不同的结果;(2)第1次抛掷,向上的点数为这6个数中的某一个,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学精品资料 新高考数学精品专题 高考数学压轴冲刺 高中数学课件 高中数学学案 高一高二数学试卷 数学模拟试卷 高考数学解题指导
限制150内