2022年青海高考文科数学真题及答案.docx
《2022年青海高考文科数学真题及答案.docx》由会员分享,可在线阅读,更多相关《2022年青海高考文科数学真题及答案.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年青海高考文科数学真题及答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合,则( )A. B. C. D. 【答案】A【解析】【分析】根据集合的交集运算即可解出【详解】因为,所以故选:A.2. 设,其中为实数,则( )A. B. C. D. 【答案】A【解析】【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出【详解】因为R,所以,解得:故选:A.3. 已知向量,则( )A. 2B. 3C. 4D. 5【答案】D【解析】【分析】先求得,然后求得.【详解】因为,所以.故选:D4. 分别统计了甲、乙两位同学16周的各
2、周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是( )A. 甲同学周课外体育运动时长的样本中位数为7.4B. 乙同学周课外体育运动时长的样本平均数大于8C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于的概率的估计值,C选项结论错误.对于D选项,
3、乙同学周课外体育运动时长大于的概率的估计值,D选项结论正确.故选:C5. 若x,y满足约束条件则的最大值是( )A. B. 4C. 8D. 12【答案】C【解析】【分析】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数为,上下平移直线,可得当直线过点时,直线截距最小,z最大,所以.故选:C.6. 设F为抛物线的焦点,点A在C上,点,若,则( )A. 2B. C. 3D. 【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点坐标,即可得到答案.【详解】由题意得,则,即点到准线的距离为2,所以点的横坐标为,不妨设点在
4、轴上方,代入得,所以.故选:B7. 执行下边的程序框图,输出的( )A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据框图循环计算即可.【详解】执行第一次循环,;执行第二次循环,;执行第三次循环,此时输出.故选:B8. 如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )A. B. C. D. 【答案】A【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设,则,故排除B;设,当时,所以,故排除C;设,则,故排除D.故选:A.9. 在正方体中,E,F分别为的中点,则( )A. 平面平面B. 平面平面C. 平面平面D. 平面平面【答案】A【解析】【分析
5、】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体中,且平面,又平面,所以,因为分别为的中点,所以,所以,又,所以平面,又平面,所以平面平面,故A正确;如图,以点为原点,建立空间直角坐标系,设,则,则,设平面的法向量为, 则有,可取,同理可得平面的法向量为,平面的法向量为,平面的法向量为,则,所以平面与平面不垂直,故B错误;因为与不平行,所以平面与平面不平行,故C错误;因为与不平行,所以平面与平面不平行,故D错误,故选:A.10. 已知等比数列的前3项和为168,则( )A. 14B. 12C.
6、6D. 3【答案】D【解析】【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列的公比为,若,则,与题意矛盾,所以,则,解得,所以.故选:D.11. 函数在区间的最小值、最大值分别为( )A. B. C. D. 【答案】D【解析】【分析】利用导数求得的单调区间,从而判断出在区间上的最小值和最大值.【详解】,所以在区间和上,即单调递增;在区间上,即单调递减,又,所以在区间上的最小值为,最大值为.故选:D12. 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )A. B. C. D.
7、 【答案】C【解析】【分析】先证明当四棱锥顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为,则(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为又则当且仅当即时等号成立,故选:C二、填空题:本题共4小题,每小题5分,共20分13. 记为等差数列的前n项和若,则公差_【答案】2【解析】【分析】转化条件为,即可
8、得解.【详解】由可得,化简得,即,解得.故答案为:2.14. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为_【答案】#0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为甲、乙都入选的方法数为,所以甲、乙都入选的概率故答案为:15. 过四点中的三点的一个圆的方程为_【答案】或或或;【解析】【分析】设圆的方程为,根据所选点的坐标,得到方程组,解得即可;【详解】解:依题意设圆的方程为,若过,则,解得,所以圆的方程为,即;若过,则,解得,所以圆的方程为,即;若过,则,解得,所以圆的方程为,即;若过,则,解得,所以圆的方程为,即;故答案为:或或或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年青 高考 文科 数学 答案
限制150内