小学奥数工程问题综合小学教育小学考试_小学教育-小学教育.pdf
《小学奥数工程问题综合小学教育小学考试_小学教育-小学教育.pdf》由会员分享,可在线阅读,更多相关《小学奥数工程问题综合小学教育小学考试_小学教育-小学教育.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是 工作量=工作效率时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子.:一件工作,甲做 15 天可完成,乙做 10 天可完成.问两人合作几天可以完成?一件工作看成 1 个整体,因此可以把工作量算作 1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1 天就是一个单位,再根据基本数量关系式,得到 工作效率工作时间=工作总量 =6(天)答:两人合作需要 6 天.这是工程问题中最
2、基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的。为了计算整数化(尽可能用整数进行计算),如第三讲例 3 和例 8 所用方法,把工作量多设份额.还是上题,10 与 15 的最小公倍数是 30。设全部工作量为 30 份,那么甲每天完成2 份,乙每天完成 3 份,两人合作所需天数是:30(2+3)=6(天)如果用数计算,更方便.3:2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是 1015=23 工程问题方法总结 一:基本数量关系:工效时间=工作总量 二:基本特点:设工作总量为“1”,工效=1/时间 三:基本方法:算术方法、比例方法、方程方法。四:基本思想:分做合想、
3、合做分想。五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。二:等量代换:方程组的解法代入法,加减法。三:按劳分配思路:每人每天工效每人工作量按比例分配 四:休息请假:方法:1.分想:划分工作量。2.假设法:假设不休息。五:休息与周期:1.已知条件的顺序:先工效,再周期,先周期,再天数。2.天数:近似天数,准确天数。3.列表确定工作天数。六:交替与周期:估算周期,注意顺序!七:注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。八:工效变化。九:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。十:牛吃草问题:1.新生草
4、量,2.原有草量,3.解决问题。工程问题 学习必备 欢迎下载.当知道了两者工作效率之比,从比例角度考虑问题,也 需时间是 因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.两个人的问题 标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.例1一件工作,甲做9天可以完成,乙做6天可以完成。现在甲先做了3天,余下的工作由乙继续完成,乙需要做几天可以完成全部工作?解一:把这件工作看作1,甲每天可完成这件工作的九分之一,做3天完成的1/3。乙每天可完成这件工作的六分之一,(1-1/3)1/6=
5、4(天)答:乙需要做4天可完成全部工作.解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是 (18-2 3)3=4(天).解三:甲与乙的工作效率之比是 6 9=2 3.甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?解:共做了6天后,原来,甲做 24天,乙做 24天,现在,甲做0天,乙做40=(24+16)天.这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效
6、率 如果乙独做,所需时间是 50天 如果甲独做,所需时间是 75天 答:甲或乙独做所需时间分别是75天和50天.例3某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?解:先对比如下:甲做63天,乙做28天;甲做48天,乙做48天.就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的 甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做 因此,乙还要做 28+28=56(天).答:乙还需要做 56天.例4 一件工程,甲队单独做10天完成,乙队单独做3
7、0天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?解一:甲队单独做8天,乙队单独做2天,共完成工作量 余下的工作量是两队共同合作的,需要的天数是 2+8+1=11(天).答:从开始到完工共用了11天.解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作 (30-3 8-1 2)(3+1)=1(天).解三:甲队做1天相当于乙队做3天.在甲队单独做 8天后,还余下(甲队)10-8=2(天)工作量.相当于乙队要做2 3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工
8、作量.4=3+1,其中3天可由甲队1天完成,因此两队只需再合作1天.解四:效率工作时间这三个量它们之间的基本数量关系是工作量工作效率时间在小学数学中探讨这三个数量之间关系的应用题我们都叫做工程问题举一个简单例子一件工作甲做天可完成乙做天可完成问两人合作几天可以完成一件工作看成再根据基本数量关系式得到工作效率工作时间工作总量天答两人合作需要天这是工程问题中最基本的问题这一讲介绍的许多例子都是从这一问题发展产生的为了计算整数化尽可能用整数进行计算第三讲例和例所用方法把工作量多设计算更方便或者说工作量固定工作效率与时间成反比例甲乙工作效率的比是工程问题方法总结一基本数量关系工效时间工作总量二基本特点
9、设工作总量为工效时间三基本方法算术方法比例方法方程方法四基本思想分做合想合做分想学习必备 欢迎下载 方法:分休合想(题中说甲乙两队没有在一起休息,我们就假设他们在一起休息.)甲队每天工作量为1/10,乙为1/30,因为甲休息了2天,而乙休息了8天,因为82,所以我们假设甲休息两天时,乙也在休息。那么甲开始工作时,乙还要休息:8-2=6(天)那么这6天内甲独自完成了这项工程的1/10 6=6/10,剩下的工作量为1-6/10=4/10,而这剩下的4/10为甲乙两人一起合作完成的工程量,所以,工程量的4/10 需要甲乙合作:(4/10)(1/10+1/30)=3天。所以从开始到完工共需:8+3=1
10、1(天)例5一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?解一:如果16天两队都不休息,可以完成的工作量是(1 20)16+(1 30)16=4/3 由于两队休息期间未做的工作量是4/3-1=1/3 乙队休息期间未做的工作量是 1/3-1/20 3=11/60 乙队休息的天数是 11/60(1/30)=11/2 答:乙队休息了5天半.解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.两队休息期间未做的工作量是 (3+2)16-60=20(份).因此乙休息天数是 (20-3
11、3)2=5.5(天).解三:甲队做2天,相当于乙队做3天.甲队休息3天,相当于乙队休息4.5天.如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是 16-6-4.5=5.5(天).例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.8天,李就能完成甲工作.此时张还余
12、下乙工作(60-4 8)份.由张、李合作需要 (60-4 8)(4+3)=4(天).8+4=12(天).答:这两项工作都完成最少需要12天.例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他 要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.两人合作,共完成 3 0.8+2 0.9=4.2(份).因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是 (30-3 8)(4.2-3)=5(天).很明显,最后转化成“鸡兔同笼”型问题.例8 甲、乙合作一件工作,由于配
13、合得好,甲的工作效率比单独做时快 如果这件工作始终由甲一人单独来做,需要多少小时?解:乙6小时单独工作完成的工作量是 乙每小时完成的工作量是 两人合作6小时,甲完成的工作量是 甲单独做时每小时完成的工作量 甲单独做这件工作需要的时间是 答:甲单独完成这件工作需要33小时.这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的效率工作时间这三个量它们之间的基本数量关系是工作量工作效率时间在小学数学中探讨这三个数量之间关系的应用题我们都叫做工程问题举一个简单例子一件工作甲做天可完成乙做天可完成问两人合作几天可以完成一件工作看成再根据基本数量关系式得到工作效率工作时间工作总
14、量天答两人合作需要天这是工程问题中最基本的问题这一讲介绍的许多例子都是从这一问题发展产生的为了计算整数化尽可能用整数进行计算第三讲例和例所用方法把工作量多设计算更方便或者说工作量固定工作效率与时间成反比例甲乙工作效率的比是工程问题方法总结一基本数量关系工效时间工作总量二基本特点设工作总量为工效时间三基本方法算术方法比例方法方程方法四基本思想分做合想合做分想学习必备 欢迎下载 计算简便.例8就是如此.例8也可以整数化,当求出乙每 有一点方便,但好处不大.不必多此一举.多人的工程问题 我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.例9 一件工作,甲、乙
15、两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?解:设这件工作的工作量是1.甲、乙、丙三人合作每天完成 减去乙、丙两人每天完成的工作量,甲每天完成 答:甲一人独做需要90天完成.例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?例10一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?解:甲做
16、1天,乙就做3天,丙就做3 2=6(天).说明甲做了2天,乙做了2 3=6(天),丙做2 6=12(天),三人一共做了 2+6+12=20(天).答:完成这项工作用了20天.本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了 例11一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4 2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天
17、,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.他们共同做13天的工作量,由甲单独完成,甲需要 答:甲独做需要26天.事实上,当我们算出甲、乙、丙三人工作效率之比是321,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.例12某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?解一:设这项工作的工作量是1.甲组每人每天能完成 乙组每人每天能完成 甲组2人和乙组7人每天能完成 答:合作3天能完成这项工作.解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此
18、7人4天能完成.现在已不需顾及人数,问题转化为:甲组独做12天,乙组独做4天,问合作几天完成?小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.例13制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?解一:仍设总工作量为1.甲每天比乙多完成 因此这批零件的总数是 丙车间制作的零件数目是 效率工作时间这三个量它们之间的基本数量关系是工作量工作效率时间在小学数学中探讨这三个数量之间关系的应用题我们
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 工程 问题 综合 小学教育 考试
限制150内