高三理数一轮复习第十二章排列组合二项式定理概率中学教育中学_中学教育-中学课件.pdf
《高三理数一轮复习第十二章排列组合二项式定理概率中学教育中学_中学教育-中学课件.pdf》由会员分享,可在线阅读,更多相关《高三理数一轮复习第十二章排列组合二项式定理概率中学教育中学_中学教育-中学课件.pdf(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十二章 排列组合、二项式定理、概率 高考导航 考试要求 重难点击 命题展望 排列、组合 1.理解并运用分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题.本章重点:排列、组合的意义及其计算方法,二项式定理的应用.本章难点:用二项式定理解决与二项展开式有关的问题.排列组合是学习概率的基础,其核心是两个基本原理.高考中着重考查两个基本原理,排列组合的概念及二项式定理.随机事件的概率 1.了解随机事件发生的不确定性和频率的稳
2、定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式和相互独立事件同时发生的概率乘法公式;3.理解古典概型及其概率计算公式;会计算一些随机事件所包含的基本事件的个数及事件发生的概率;4.了解随机数的意义,能运用模拟方法估计概率,了解几何概型的意义.本章重点:1.随机事件、互斥事件及概率的意义,并会计算互斥事件的概率;2.古典概型、几何概型的概率计算.本章难点:1.互斥事件的判断及互斥事件概率加法公式的应用;2.可以转化为几何概型求概率的问题.本部分要求考生能从集合的思想观点认识事件、互斥事件与对立事件,进而理解概率的性质、公式,还要求考生了解几何概型与随机数的意义.在高
3、考中注重考查基础知识和基本方法的同时,还常考查分类与整合,或然与必然的数学思想方法,逻辑思维能力以及运用概率知识解决实际问题的能力.离散型随机变量 1.理解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单的应用;3.了解条件概率和两个事件相互独立的概念,理解 n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;4.理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;5.利用实际问题的直方图,认识正态分布曲线的特点及曲线所表示的意义.本章重点:1.离散型随机
4、变量及其分布列;2.独立重复试验的模型及二项分布.本章难点:1.利用离散型随机变量的均值、方差解决一些实际问题;2.正态分布曲线的特点及曲线所表示的意义.求随机变量的分布列与期望,以及在此基础上进行统计分析是近几年来较稳定的高考命题态势.考生应注重对特殊分布(如二项分布、超几何分布)的理解和对事件的意义的理解.知识网络 12.1 分类加法计数原理与分步乘法计数原理 典例精析 题型一 分类加法计数原理的应用【例 1】在 1 到 20 这 20 个整数中,任取两个数相加,使其和大于 20,共有 种取法.【解析】当一个加数是 1 时,另一个加数只能是 20,有 1 种取法;当一个加数是 2 时,另一
5、个加数可以是 19,20,有 2 种取法;当一个加数是 3 时,另一个加数可以是 18,19,20,有 3 种取法;当一个加数是 10 时,另一个加数可以是 11,12,19,20,有 10 种取法;当一个加数是 11 时,另一个加数可以是 12,13,19,20,有 9 种取法;项式定理的应用本章难点用二项式定理解决与二项展开式有关的问题排列组合是学习概率的基础其核心是两个基本原理高考中着重考查两个基本原理排列组合的概念及二项式定理本章重点随机事件互斥事件及概率的意义并会计算互何概型求概率的问题本部分要求考生能从集合的思想观点认识事件互斥事件与对立事件进而理解概率的性质公式还要求考生了解几何
6、概型与随机数的意义在高考中注重考查基础知识和基本方法的同时还常考查分类与整合或然与必然复试验的模型及二项分布本章难点利用离散型随机变量的均值方差解决一些实际问题正态分布曲线的特点及曲线所表示的意义求随机变量的分布列与期望以及在此基础上进行统计分析是近几年来较稳定的高考命题态势考生应注重对当一个加数是 19 时,另一个加数只能是 20,有 1 种取法.由分类加法计数原理可得共有 12310981100 种取法.【点拨】采用列举法分类,先确定一个加数,再利用“和大于 20”确定另一个加数.【变式训练 1】(2010 济南市模拟)从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这
7、样的等比数列的个数为()A.3 B.4 C.6 D.8【解析】当公比为 2 时,等比数列可为 1,2,4 或 2,4,8;当公比为 3 时,等比数列可为 1,3,9;当公比为32时,等比数列可为 4,6,9.同理,公比为12、13、23时,也有 4 个.故选 D.题型二 分步乘法计数原理的应用【例 2】从 6 人中选 4 人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且 6 个人中甲、乙两人不去张家界游览,则不同的选择方案共有 种.【解析】能去张家界的有 4 人,依此能去韶山、衡山、桃花源的有 5 人、4 人、3 人.则由分步乘法计数
8、原理得不同的选择方案有 4 5 4 3240 种.【点拨】根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步之间既不能重复也不能遗漏.【变式训练 2】(2010 湘潭市调研)要安排一份 5 天的值班表,每天有一人值班,现有 5 人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有 种不同的排法.【解析】依题意,值班表须一天一天分步完成.第一天有 5 人可选有 5 种方法,第二天不能用第一天的人有 4 种方法,同理第三天、第四天、第五天也都有 4 种方法,由分步乘法计数原理共有 5 4 4 4 41 280种方法.题型三 分类和分步计数原理
9、综合应用【例 3】(2011 长郡中学)如图,用 4 种不同的颜色对图中 5 个区域涂色(4 种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有 .【解析】方法一:由题意知,有且仅有两个区域涂相同的颜色,分为 4 类:1 与 5同;2 与 5 同;3 与 5 同;1 与 3 同.对于每一类有 A44种涂法,共有 4A4496 种方法.方法二:第一步:涂区域 1,有 4 种方法;第二步:涂区域 2,有 3 种方法;第三步:涂区域 4,有 2种方法(此前三步已经用去三种颜色);第四步:涂区域 3,分两类:第一类,3 与 1 同色,则区域 5 涂第四种颜色;第二
10、类,区域 3 与 1 不同色,则涂第四种颜色,此时区域 5 就可以涂区域 1 或区域 2 或区域 3 中项式定理的应用本章难点用二项式定理解决与二项展开式有关的问题排列组合是学习概率的基础其核心是两个基本原理高考中着重考查两个基本原理排列组合的概念及二项式定理本章重点随机事件互斥事件及概率的意义并会计算互何概型求概率的问题本部分要求考生能从集合的思想观点认识事件互斥事件与对立事件进而理解概率的性质公式还要求考生了解几何概型与随机数的意义在高考中注重考查基础知识和基本方法的同时还常考查分类与整合或然与必然复试验的模型及二项分布本章难点利用离散型随机变量的均值方差解决一些实际问题正态分布曲线的特点
11、及曲线所表示的意义求随机变量的分布列与期望以及在此基础上进行统计分析是近几年来较稳定的高考命题态势考生应注重对的任意一种颜色,有 3 种方法.所以,不同的涂色种数有 4 3 2(1 11 3)96 种.【点拨】染色问题是排列组合中的一类难题.本题能运用两个基本原理求解,要注意的是分类中有分步,分步后有分类.【变式训练 3】(2009 深圳市调研)用红、黄、蓝三种颜色去涂图中标号为 1,2,9 的 9个小正方形,使得任意相邻(有公共边)小正方形所涂颜色都不相同,且 1,5,9 号小正方形涂相同颜色,则符合条件的所有涂法有多少种?【解析】第一步,从三种颜色中选一种颜色涂 1,5,9 号有 C13种
12、涂法;第二步,涂 2,3,6 号,若 2,6 同色,有 4 种涂法,若 2,6 不同色,有 2 种涂法,故共有 6 种涂法;第三步,涂 4,7,8 号,同第二步,共有 6 种涂法.由分步乘法原理知共有 3 6 6108 种涂法.总结提高 分类加法计数原理和分步乘法计数原理回答的都是完成一件事有多少种不同方法或种数的问题,其区别在于:分类加法计数原理是完成一件事要分若干类,类与类之间要互斥,用任何一类中的任何一种方法都可以独立完成这件事;分步乘法计数原理是完成一件事要分若干步,步骤之间相互独立,各个步骤相互依存,缺少其中任何一步都不能完成这件事,只有当各个步骤都完成之后,才能完成该事件.因此,分
13、清完成一件事的方法是分类还是分步,是正确使用这两个基本计数原理的基础.12.2 排列与组合 典例精析 题型一 排列数与组合数的计算【例 1】计算:(1)8!A66A28A410;(2)C33C34C310.【解析】(1)原式8 7 6 5 4 3 2 16 5 4 3 2 18 710 9 8 757 6 5 4 3 256(89)5 130623.(2)原式C44C34C35C310C45C35C310C46C36C310C411330.【点拨】在使用排列数公式 Amnn!(nm)!进行计算时,要注意公式成立的条件:m,n N+,mn.另外,应注意组合数的性质的灵活运用.【变式训练 1】解不
14、等式x9A629Ax.【解析】原不等式即9!(9x)!69!(11x)!,项式定理的应用本章难点用二项式定理解决与二项展开式有关的问题排列组合是学习概率的基础其核心是两个基本原理高考中着重考查两个基本原理排列组合的概念及二项式定理本章重点随机事件互斥事件及概率的意义并会计算互何概型求概率的问题本部分要求考生能从集合的思想观点认识事件互斥事件与对立事件进而理解概率的性质公式还要求考生了解几何概型与随机数的意义在高考中注重考查基础知识和基本方法的同时还常考查分类与整合或然与必然复试验的模型及二项分布本章难点利用离散型随机变量的均值方差解决一些实际问题正态分布曲线的特点及曲线所表示的意义求随机变量的
15、分布列与期望以及在此基础上进行统计分析是近几年来较稳定的高考命题态势考生应注重对也就是1(9x)!)!9)10()11(6xxx,化简得 x221x1040,解得 x8 或 x13,又因为 2x9,且 x N*,所以原不等式的解集为2,3,4,5,6,7.题型二 有限制条件的排列问题【例 2】3 男 3 女共 6 个同学排成一行.(1)女生都排在一起,有多少种排法?(2)女生与男生相间,有多少种排法?(3)任何两个男生都不相邻,有多少种排法?(4)3 名男生不排在一起,有多少种排法?(5)男生甲与男生乙中间必须排而且只能排 2 位女生,女生又不能排在队伍的两端,有几种排法?【解析】(1)将 3
16、 名女生看作一人,就是 4 个元素的全排列,有 A44种排法.又 3 名女生内部可有 A33种排法,所以共有 A44A33144 种排法.(2)男生自己排,女生也自己排,然后相间插入(此时有 2 种插法),所以女生与男生相间共有 2A33A3372 种排法.(3)女生先排,女生之间及首尾共有 4 个空隙,任取其中 3 个安插男生即可,因而任何两个男生都不相邻的排法共有 A33A34144 种.(4)直接分类较复杂,可用间接法.即从 6 个人的排列总数中,减去 3 名男生排在一起的排法种数,得 3名男生不排在一起的排法种数为 A66A33A44576 种.(5)先将 2 个女生排在男生甲、乙之间
17、,有 A23种排法.又甲、乙之间还有 A22种排法.这样就有 A23A22种排法.然后把他们 4 人看成一个元素(相当于一个男生),这一元素及另 1 名男生排在首尾,有 A22种排法.最后将余下的女生排在其间,有 1 种排法.故总排法为 A23A22A2224 种.【点拨】排列问题的本质就是“元素”占“位子”问题,有限制条件的排列问题的限制主要表现在:某些元素“排”或“不排”在哪个位子上,某些元素“相邻”或“不相邻”.对于这类问题,在分析时,主要按照“优先”原则,即优先安排特殊元素或优先满足特殊位子,对于“相邻”问题可用“捆绑法”,对于“不相邻”问题可用“插空法”.对于直接考虑较困难的问题,可
18、以采用间接法.【变式训练 2】把 1,2,3,4,5 这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列构成一个数列.项式定理的应用本章难点用二项式定理解决与二项展开式有关的问题排列组合是学习概率的基础其核心是两个基本原理高考中着重考查两个基本原理排列组合的概念及二项式定理本章重点随机事件互斥事件及概率的意义并会计算互何概型求概率的问题本部分要求考生能从集合的思想观点认识事件互斥事件与对立事件进而理解概率的性质公式还要求考生了解几何概型与随机数的意义在高考中注重考查基础知识和基本方法的同时还常考查分类与整合或然与必然复试验的模型及二项分布本章难点利用离散型随机变量的均值方差解决一些
19、实际问题正态分布曲线的特点及曲线所表示的意义求随机变量的分布列与期望以及在此基础上进行统计分析是近几年来较稳定的高考命题态势考生应注重对(1)43 251 是这个数列的第几项?(2)这个数列的第 97 项是多少?【解析】(1)不大于 43 251 的五位数 A55(A44A33A22)88 个,即为此数列的第 88 项.(2)此数列共有 120 项,而以 5 开头的五位数恰好有 A4424 个,所以以 5 开头的五位数中最小的一个就是该数列的第 97 项,即 51 234.题型三 有限制条件的组合问题【例 3】要从 12 人中选出 5 人去参加一项活动.(1)A,B,C 三人必须入选有多少种不
20、同选法?(2)A,B,C 三人都不能入选有多少种不同选法?(3)A,B,C 三人只有一人入选有多少种不同选法?(4)A,B,C 三人至少一人入选有多少种不同选法?(5)A,B,C 三人至多二人入选有多少种不同选法?【解析】(1)只须从 A,B,C 之外的 9 人中选择 2 人,C2936 种不同选法.(2)由 A,B,C 三人都不能入选只须从余下 9 人中选择 5 人,即有 C59C49126 种选法.(3)可分两步,先从 A,B,C 三人中选出 1 人,有 C13种选法,再从余下的 9 人中选 4 人,有 C49种选法,所以共有 C13C49378 种选法.(4)可考虑间接法,从 12 人中
21、选 5 人共有 C512种,再减去 A,B,C 三人都不入选的情况 C59,共有 C512C59666 种选法.(5)可考虑间接法,从 12 人中选 5 人共有 C512种,再减去 A,B,C 三人都入选的情况 C29种,所以共有C512C29756 种选法.【点拨】遇到至多、至少的有关计数问题,可以用间接法求解.对于有限制条件的问题,一般要根据特殊元素分类.【变式训练 3】四面体的顶点和各棱中点共有 10 个点.(1)在其中取 4 个共面的点,共有多少种不同的取法?(2)在其中取 4 个不共面的点,共有多少种不同的取法?【解析】(1)四个点共面的取法可分三类.第一类:在同一个面上取,共有 4
22、C46种;第二类:在一条棱上取三点,再在它所对的棱上取中点,共有 6 种;第三类:在六条棱的六个中点中取,取两对对棱的 4 个中点,共有 C233 种.故有 69 种.(2)用间接法.共 C41069141 种.总结提高 项式定理的应用本章难点用二项式定理解决与二项展开式有关的问题排列组合是学习概率的基础其核心是两个基本原理高考中着重考查两个基本原理排列组合的概念及二项式定理本章重点随机事件互斥事件及概率的意义并会计算互何概型求概率的问题本部分要求考生能从集合的思想观点认识事件互斥事件与对立事件进而理解概率的性质公式还要求考生了解几何概型与随机数的意义在高考中注重考查基础知识和基本方法的同时还
23、常考查分类与整合或然与必然复试验的模型及二项分布本章难点利用离散型随机变量的均值方差解决一些实际问题正态分布曲线的特点及曲线所表示的意义求随机变量的分布列与期望以及在此基础上进行统计分析是近几年来较稳定的高考命题态势考生应注重对解有条件限制的排列与组合问题的思路:(1)正确选择原理,确定分类或分步计数;(2)特殊元素、特殊位置优先考虑;(3)再考虑其余元素或其余位置.12.3 二项式定理 典例精析 题型一 二项展开式的通项公式及应用【例 1】已知nxx)21(4的展开式中,前三项系数的绝对值依次成等差数列.(1)求证:展开式中没有常数项;(2)求展开式中所有的有理项.【解析】由题意得 2C1n
24、211C2n(21)2,即 n29n80,所以 n8,n1(舍去).所以 Tr1r8C(x)r8rx)21(4(21)rr8C28 rx4rx(1)rrr2C84316rx(0r8,rZ).(1)若 Tr1是常数项,则163r40,即 163r0,因为 r Z,这不可能,所以展开式中没有常数项.(2)若 Tr1是有理项,当且仅当163r4为整数,又 0r8,r Z,所以 r0,4,8,即展开式中有三项有理项,分别是 T1x4,T5358 x,T91256 x-2.【点拨】(1)把握住二项展开式的通项公式,是掌握二项式定理的关键.除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系
25、、性质;(2)应用通项公式求二项展开式的特定项,如求某一项,含 x 某次幂的项,常数项,有理项,系数最大的项等,一般是应用通项公式根据题意列方程,在求得 n 或 r 后,再求所需的项(要注意 n 和 r 的数值范围及大小关系);项式定理的应用本章难点用二项式定理解决与二项展开式有关的问题排列组合是学习概率的基础其核心是两个基本原理高考中着重考查两个基本原理排列组合的概念及二项式定理本章重点随机事件互斥事件及概率的意义并会计算互何概型求概率的问题本部分要求考生能从集合的思想观点认识事件互斥事件与对立事件进而理解概率的性质公式还要求考生了解几何概型与随机数的意义在高考中注重考查基础知识和基本方法的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三理数 一轮 复习 第十二 排列组合 二项式 定理 概率 中学 教育 课件
限制150内