2023年安徽铜陵中考数学试题及答案.docx
《2023年安徽铜陵中考数学试题及答案.docx》由会员分享,可在线阅读,更多相关《2023年安徽铜陵中考数学试题及答案.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年安徽铜陵中考数学试题及答案注意事项:1你拿到的试卷满分为150分,考试时间为120分钟2试卷包括“试题卷”和“答题卷”两部分“试题卷”共4页,“答题卷”共6页3请务必在“答题卷”上答题,在“试题卷”上答题是无效的4考试结束后,请将“试题卷”和“答题卷”一并交回一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的1的相反数是( )A B C D52某几何体的三视图如图所示,则该几何体为( )A B C D3下列计算正确的是( )A B C D4在数轴上表示不等式的解集,正确的是( )A B C D5下列函数中,的值随值的
2、增大而减小的是( )A B C D6如图,正五边形内接于,连接,则( )A B C D7如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A B C D8如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点若,则( )A B C D9已知反比例函数在第一象限内的图象与一次函数的图象如图所示,则函数的图象可能为( )A B C D10如图,是线段上一点,和是位于直线同侧的两个等边三角形,点分别是的中点若,则下列结论错误的是( )A的最小值为 B的最小值为C周长的最小
3、值为6 D四边形面积的最小值为二、填空题(本大题共4小题,每小题5分,满分20分)11计算:_12据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为_13清初数学家梅文鼎在著作平三角举要中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,是锐角的高,则当,时,_14如图,是坐标原点,的直角顶点在轴的正半轴上,反比例函数的图象经过斜边的中点(1)_;(2)为该反比例函数图象上的一点,若,则的值为_三、(本大题共2小题,每小题8分,满分16分)15先化简,再求值:,其中
4、16根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨,乙地降价5元,已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价四、(本大题共2小题、每小题8分、满分16分)17如图,在由边长为1个单位长度的小正方形组成的网格中,点均为格点(网格线的交点)(1)画出线段关于直线对称的线段;(2)将线段向在平移2个单位长度,再向上平移1个单位长度,得到线段,画出线段;(3)描出线段上的点及直线上的点,使得直线垂直平分18【观察思考】【规律发现】请用含的式子填空:(1)第个图案中“”的个数为_;(2)第1个图案中“”的个数可表示为,第2个
5、图案中“”的个数可表示为,第3个图案中“”的个数可表示为,第4个图案中“”的个数可表示为,第n个图案中“”的个数可表示为_【规律应用】(3)结合图案中“”的排列方式及上述规律,求正整数,使得连续的正整数之和等于第个图案中“”的个数的2倍五、(本大题共2小题,每小题10分,满分20分)19如图,是同一水平线上的两点,无人机从点竖直上升到点时,测得到点的距离为点的俯角为,无人机继续竖直上升到点,测得点的俯角为求无人机从点到点的上升高度(精确到)参考数据:,20已知四边形内接于,对角线是的直径(1)如图1,连接,若,求证;平分;(2)如图2,为内一点,满足,若,求弦的长六、(本题满分12分)21端午
6、节是中国的传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数、为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分678910人数12ab2已知八年级10名学生活动成绩的中位数为8.5分请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是_,七年级活动成绩的众数为_分;(2)_,_;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀
7、率高的年级是否平均成绩也高,并说明理由七、(本题满分12分)22在中,是斜边的中点,将线段绕点旋转至位置,点在直线外,连接(1)如图1,求的大小;(2)已知点和边上的点满足()如图2,连接,求证:;()如图3,连接,若,求的值八、(本题满分14分)23在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线(1)求的值;(2)已知点在抛物线上,点的横坐标为,点的横坐标为过点作轴的垂线交直线于点,过点作轴的垂线交直线于点()当时,求与的面积之和;()在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由2023年中考数学参考答案一、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 安徽 铜陵 中考 数学试题 答案
限制150内