高中物理奥赛《力学》资料汇编.pdf
《高中物理奥赛《力学》资料汇编.pdf》由会员分享,可在线阅读,更多相关《高中物理奥赛《力学》资料汇编.pdf(135页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中物理竞赛 力学1.1 常见的力1.2 力的合成与分解1.5 一般物体的平衡2.1质点运动学的基本概念2.2运动的合成与分解相对运动2.3抛体运动2.4质点的圆周运动2.5几种速度的特殊求法3.1牛顿定律3.2牛顿定律在曲线运动中的应用3.4应用牛顿运动定律解题的方法和步骤3.5力和运动的关系3.6万有引力天体的运动4.10天体的运动与能量4.1 动量与冲量动量定理4.4功和功率4.7功能原理和机械能守恒定律4.8碰撞5.1简谐振动5.3振动能量与共振5.4振动的合成5.5机械波高中物理竞赛 力学第 一 讲 力、物体的平衡 1.1常见的力1.L 1、力的概念和量度惯性定律指出,一个物体,如果
2、没有受到其他物体作用,它就保持其相对于惯性参照系的速度不变,也就是说,如果物体相对于惯性参照系的速度有所改变,必是由于受到其他物体对它的作用,在力学中将这种作用称为力。凡是讲到一个力的时候,应当说清楚讲到的是哪一物体施了哪一个物体的力。一个物体,受到了另一物体施于它的力,则它相对于惯性参照系的速度就要变化,或者说,它获得相对于惯性参照系的加速度,很自然以它作用于一定的物体所引起的加速度作为力的大小的量度。实际进行力的量度的时候,用弹簧秤来测量。重力 由于地球的吸引而使物体受到的力,方向竖直向下,在地面附近,可近似认为重力不变(重力实际是地球对物体引力的一个分力,随纬度和距地面的高度而变化)弹力
3、 物体发生弹性变形后,其内部原子相对位置改变,而对外部产生的宏观反作用力。反映固体Fa=材料弹性性质的胡克定律,建立了胁强(应力)s_ A/与 胁 变(应变)之间的正比例关系,如图所示a-E s式中E 为杨氏弹性模量,它表示将弹性杆拉长一倍时,横截面上所需的应力。弹力的大小取决于变形的程度,弹簧的弹力,遵循胡克定律,在弹性限度内,高中物理竞赛 力学弹簧弹力的大小与形变量(伸长或压缩量)成正比。F=-kx式 中 x 表示形变量;负号表示弹力的方向与形变的方向相反;k 为劲度系数,由链条等,其张力7 方 位:沿柔索(指 向:拉物体一般不计柔索的弹性,认为是不可伸长的。滑轮组中,若不计摩擦与滑轮质量
4、,同一根绳内的张力处处相等。2、光 滑 面(图 1-1-3)接触处的切平面方位不受力,其法向支承力J 方位:沿法线N4指向:压物体3、光滑较链物体局部接触处仍属于光滑面,但由于接触位置难于事先确定,这类接触反力的方位,除了某些情况能由平衡条件定出外,一般按坐标分量形式设定。高中物理竞赛 力学(1)圆柱形较链(图1-1-4,图 1-1-5,图 1-1-6)由两个圆孔和一个圆柱销组成。在孔的轴线方向不承受作用力,其分力图 1-1-4图 1-1-5 图 1-1-6x 方位:沿x轴 指向:待定 方位:沿y轴 指向:待定图中AC杆受力如图,支 座B处为可动较,水平方向不受约束,反力如图。(2)球 形 封
5、 链(图1-1-7,a 1-1-8)由一个球碗和一个球头组成,其反力可分解为XYZ方位:沿坐标轴,指向:待定图 1-1-7 图 1-1-84X方位:沿坐标轴“指向:待定 方位:平面力系作用面M JA转向:待定摩 擦 力 物 体 与 物 体 接 触 时,在接触面上有一种阻止它们相对滑动的作用高中物理竞赛 力学力称为摩擦力。不仅固体与固体的接触面上有摩擦,固体与液体的接触面或固体与气体的接触面上也有摩擦,我们主要讨论固体与固体间的摩擦。1.1.2、摩擦分为静摩擦和滑动摩擦当两个相互接触的物体之间存在相对滑动的趋势(就是说:假如它们之间的接 触 是“光滑的”,将发生相对滑动)时,产生的摩擦力为静摩擦
6、力,其方向与接触面上相对运动趋势的指向相反,大小视具体情况而定,由平衡条件或从动力学的运动方程解算出来,最大静摩擦力为/max=式中。称为静摩擦因数,它取决于接触面的材料与接触面的状况等,N为两物体间的正压力。当两个相互接触的物体之间有相对滑动时,产生的摩擦力为滑动摩擦力。滑动摩擦力的方向与相对运动的方向相反,其大小与两物体间的正压力成正比。f =N 为滑动摩擦因数,取决于接触面的材料与接触面的表面状况,在通常的相对速度范围内,可看作常量,在通常情况下,。与可不加区别,两物体维持相对静止的动力学条件为静摩擦力的绝对值满足Y K 人=p N在接触物的材料和表面粗糙程度相同的条件下,静摩擦因数。略
7、大于动摩擦因数摩擦角 令静摩擦因数。等于某一角。的正切值,即。=火夕,这个。角就称为摩擦角。在 临 界 摩 擦(将要发生滑动状态下)Je/N=M=tg(P。支承高中物理竞赛 力学面作用于物体的沿法线方向的弹力N 与 最 大 静 摩 擦 力 的 合 力 F(简称全反力)与接触面法线方向的夹角等于摩擦角,如 图 1-1-11所 示(图中未画其他力)。在一般情况下,静摩擦力/。未达到最大值,即因 此 接 触 面 反 作用于物体的全反力尸的作用线与面法线的a=arctg 夹角 N,不会大于摩擦角,即。(夕。物体不会滑动。由此可知,运用摩擦角可判断物体是否产生滑动的条件。如 图 1-1-12放在平面上的
8、物体A,用 力 F 去推它,设摩擦角为,推 力 F 与法线夹角为a,当。时,无 论 F 多大,也不可能推动物块A,只有。时,才可能推动A。摩擦力作用的时间 因为只有当两个物体之间有相对运动或相对运动趋势时,才有摩擦力,所以要注意摩擦力作用的时间。如一个小球竖直落下与一块在水平方向上运动的木块碰撞后,向斜上方弹出,假设碰撞时间为加,但可能小球不需要加时间,在水平方向上便已具有了与木块相同的速度,则在剩下的时间内小球和木块尽管还是接触的,但互相已没有摩擦力。如 图 1-1-14,小木块和水平地面之间的动摩擦因数为,用一个与水平方向成多大角度的力F 拉着木块匀速直线运动最省力?将摩擦力/和地面对木块
9、的弹力N 合成 qA F.一个力尸,摩擦角为;l xF 尸,ZG图 1-1-14高中物理竞赛 力学(p=ts =ts UN 这样木块受三个力:重 力 G,桌面对木块的作用力尸和拉力F,如 图 1-1-14,作出力的三角形,很容易看出当F 垂直于尸时尸最小,即有 F 与水平方向成夕=tg”时最小。例1、如 图 1 T T 5 所示皮带速度为,物A 在皮带上以速度匕垂直朝皮带边运动,试求物A 所受摩擦力的方向。解:物 A 相对地运动速度为匕,匕=%+匕,滑动摩擦力f 与匕方向相反如图所示。例 2、物体所受全反力R与法向的夹角a 外 的情形可能出现吗?解:不可能。因为若有%则即N o 这是不可能的。
10、然而在要判断一个受摩擦物体是否静止时,可事先假定它静止,由平衡求a=fg T(Z)出 N,有如下三种情形:玲静止o =0临界状态滑动图 1TT6高中物理竞赛 力学1.2力的合成与分解1.2.1、力的合成遵循平行四边形法则即力片和尸2的合力即此二力构成的平行四边形的对角线所表示的力F,如图1-2T(a)根据此法则可衍化出三角形法则。即:将,尸2通过平移使其首尾相接,则由起点指向末端的力F 上.一 F 即片,尸2的 合 力。(如图1-2-1(b)图 1-2T如果有多个共点力求合力,可在三角形法则的基础上,演化为多边形法则。如 图1 2-2所示,a图为有四个力共点O,b图表示四个力矢首尾相接,从力的
11、作用点0连接力F&力矢末端的有向线段就表示它们的合力。而(c)图表示五个共点力组成的多边形是闭合的,即片力矢的起步与用力矢的终点重合,这表示它们的合力为零。力的分解是力的合成的逆运算,也遵循力的平行四边形法则,一般而言,一个力分解为两力有多解答,为得确定解还有附加条件,通常有以下三种情况:已知合力和它两分力方向,求这两分力大小。这有确定的一组解答。已知合力力。这也有确定的确答。已知合力和其中一个分力大小及另一个分力方向,求第一个合力方向和第二分力大小,其解答可能有三种情况:一解、两解利无解。高中物理竞赛 力学1.2.2、平面共点力系合成的解析法如 图1-2-3,将平面共点力及其合力构成力的多边
12、形a b c d e,并在该平面取直角坐标系O x y,作出各力在两坐标轴上的投影,从图上可见:R、=Flx+F2X+EX+F4XRy=Ky+F+K*+Ex上式说明,合力在任意一轴上的投影,等于各分力在同一轴上投影的代数和,这也称为合力投影定理。知道了合力R的两个投影段和号,就不难求出合力的大小与方向了。合力R的大小为:R=m+&合力的方向可用合力R与x轴所夹的角的正切值来确定:1.2.3、平行力的合成与分解作用在一个物体上的几个力的作用线平行,且不作用于同一点,称为平行力系。如 图 2-4如果力的方向又相同,则称为同向平行力。两个同向平行力的合力(R)的大小等于两分力大小之和,合力作用线与(
13、b)图 1-2-4高中物理竞赛 力学分力平行,合力方向与两分力方向相同,合力作用点在两分力作用点的连线上,合力作用点到分力作用点的距离与分力的大小成反比,如 图l-2-4(a),有:R=Fl+F2Z =F eo s/这就是直接投影法所得结果,也可如图1-2-6所示采用二次投影法。这时X =Fr v,c o s(FD.,x)式中D为户在o x y平面上的投影矢量,而艮 人 同s i n(艮Z)高中物理竞赛 力学力沿直角坐标轴的分解式F=Xi+Yj+Zk=Fxi+F j+F:k L 3共点力作用下物体的平衡1.3.1、共点力作用下物体的平衡条件儿个力如果都作用在物体的同一点,或者它们的作用线相交于
14、同一点,这儿个力叫作共点力。当物体可视为质点时,作用在其上的力都可视为共点力。当物体不能视为质点时.,作用于其上的力是否可视为共点力要看具体情况而定。物体的平衡包括静平衡与动平衡,具体是指物体处于静止、匀速直线运动和匀速转动这三种平衡状态。共点力作用下物体的平衡条件是;物体所受到的力的合力为零。或其分量式:2外=02综=。2七=/i i如果在三个或三个以上的共点力作用下物体处于平衡,用力的图示表示,则这些力必组成首尾相 共,%接的闭合力矢三角形或多边形;力系中的任一个力 F,必与其余所有力的合力平衡;如果物体只在两个力 图上3-1作用下平衡,则此二力必大小相等、方向相反、且在同一条直线上,我们
15、常称为一对平衡力;如果物体在三个力作用下平衡,则此三力一定共点、一定在同一个平面内,如 图 1-3 T 所示,且满足下式(拉密定理):sin a sin(3 sin/1.3.2、推论高中物理竞赛 力学物体在n(n 2 3)个外力作用下处于平衡状态,若其中有n-l个力为共点力,即它们的作用线交于0点,则最后一个外力的作用线也必过0点,整个外力组必为共点力。这是因为n-l个外力构成的力组为共点(0点)力,这n-l个的合力必过0点,最后一个外力与这nT个外力的合力平衡,其作用线必过。点。特例,物体在作用线共面的三个非平行力作用下处于平衡状态时,这三个力的作用线必相交于一点且一定共面。1.4 固定转动
16、轴物体的平衡1.4.1、力矩力的三要素是大小、方向和作用点。由作用点和力的。、/方向所确定的射线称为力的作用线。力作用于物体,常能 d、Z/使物体发生转动,这时外力的作用效果不仅取决于外力的图 1-4-1大小和方向,而且取决于外力作用线与轴的距离力臂(d)o力与力臂的乘积称为力矩,记 为M,则M=F d,如 图1-4-1,0为垂直于纸面的固定轴,力F在纸面内。力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴转动没有作用。若 力F不在与轴垂直的平面内,可先将力分解为垂直于轴的分量F _ L和平行于轴的分量F/,F对转动不起作用,这时力F的力矩为M=F l d 通常规定绕逆时方
17、向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。1.4.2、力偶和力偶矩一对大小相等、方向相反但不共线的力称为力偶。:、一出个图 1-4-2高中物理竞赛 力学如 图 1-4-2中片,尸 2即为力偶,力偶不能合成为一个力,是一个基本力学量。对于与力偶所在平面垂直的任一轴,这一对力的力矩的代数和称为力偶矩,注意到Fi =&=F,不难得到,M=Fd,式 中 d 为两力间的距离。力偶矩与所相对的轴无关。1.4.3、有固定转动轴物体的平衡有固定转轴的物体,若处于平衡状态,作用于物体上各力的力矩的代数和为零。高中物理竞赛 力学 1.5 一般物体的平衡力对物体的作用可以
18、改变物体的运动状态,物体各部位所受力的合力对物体的平动有影响,合力矩对物体的转动有影响。如果两种影响都没有,就称物体处于平衡状态。因此,一般物体处于平衡时,要求物体所受合外力为零(工厂外=和 合 力 矩 为 零 二 )同时满足,一般物体的平衡条件写成分量式为Z工=o J X=oZ4=oJX=o分别为对X轴、y轴、Z轴的力矩。由空间-一 般力系的平衡方程,去掉由力系的儿何性质能自动满足的平衡方程,容易导出各种特殊力系的独立平衡方程。如平面力系(设在g平面内),则Z=心 心=,IX =自动满足,则独立的平衡方程为:%=0K=0Z M z =这一方程中的转轴可根据需要任意选取,一般原则是使尽量多的力
19、的力臂为零。平面汇交力系与平面平行力系的独立方程均为二个,空间汇交力系和空间平行力系的独立平衡方程均为三个。1.6平衡的稳定性1.6.1、重心物体的重心即重力的作用点。在重力加速度后为常矢量的区域,物体的重心高中物理竞赛 力学是 惟 一 的(我们讨论的都是这种情形),重心也就是物体各部分所受重力的合力的作用点,由于重力与质量成正比,重力合力的作用点即为质心,即重心与质心重合。求重心,也就是求一组平行力的合力作用点。相 距 L,质 量 分 别 为 犯 的 两个质点构成的质点组,其重心在两质点的连线上,且网,加2与相距分别为:(叫+m2)L1 m2L=0(叫+m2)L2-mlL=0m2L=m Jm
20、x+m2 mx+m2均匀规则形状的物体,其重心在它的儿何中心,求-一般物体的重心,常用的方法是将物体分割成若干个重心容易确定的部分后,再用求同向平行力合力的方法找出其重心。物 体 重 心(或质心)位置的求法我们可以利用力矩和为零的平衡条件来求物体的重心位置。如图卜6-1 由重量分别为G”G2的两均匀圆球和重量为G3的均匀杆连成的系统,设立如图坐标系,原点取在A球最左侧点,两球与杆的重心的坐标分别为X”X2,3,系统重心在 P 点,我们现在求其坐标X。设想在P 处给一支持力R,令 穴=5+6 2+6 3 达到平衡时有:=Gx+G2X2+G3X3-Rx=0_ G元 +G2X2+G3X3 _ GX|
21、+G2X2+G3元 3RGj+G)+G3高中物理竞赛 力学这样就得出了如图所示的系统的重心坐标。若有多个物体组成的系统,我们不难证明其重心位置为:X=EGiXjGiyZGiYGizG i一般来说,物体的质心位置与重心位置重合,由上面公式很易得到质心位置公式:X=yZ内Xmi/z,.E叫P f=I图 1-6-2如图1-6-2,有5个外形完全一样的均匀金属棒首尾相接焊在一起,从左至右其密度分别为P、L IP、L2P、1.3 P、1.4 P,设每根棒长均为,求其质心位置,若 为n段,密度仍如上递增,质心位置又在什么地方?解:设整个棒重心离最左端距离为X,则由求质心公式有x=2%七 mx+m2x2 H
22、-l-/7z5x5mx+m2 H-F m5/3 5 7 9.2+1.1-2/+1.2-2/+1.3-2/+1.4-2/w+l.lpv+1.2pv+1.3pv4-1.4p&2.67/若 为n段,按上式递推得:高中物理竞赛 力学n ,1 +1.1x3+1.2x5+1.3x7+(1+)(2/1-1)X 102/?1/1+1.1+1.2+1.3+(1+)10将坐标原点移到第一段棒的重心上,则上式化为:n 11.1+1.2x2+1.3x3+(1+)(一1)X _ _ 10 IH I1 +1.1+1.2+(1+)101r 1(1+)+(1+)x2+-+(l+)(n-1)10 10 107 1 11 +1.
23、1+1.2+-+(1+)101+2+-+(H-1)+l2+22+-+(H-1)2=-:-1n l+l.l+L2+(l+)10_(n-1)(2H+3q)3(+q)2 4的 小 球,均质杆重量为35 G64,长度,=4 R,试求系统的重心位置。解:将挖去部份的重力,用等值、反向的力取代,图示系统可简化为图1-1-31所示平行力系;其中G.=S,G G8 64 o设重心位置为0,则合力G 27 93kv=G+G-G=G8 64 64月 Z (G)=。即G 0R-OC)+G(OC+3/?+-)=(3/?-0 C +G OC+G(3R+OC)64 4 8 2 640C=0.53R高中物理竞赛 力学1.6
24、.2、物体平衡的种类物体的平衡分为三类:稳定平衡 处于平衡状态的物体,当受到外界的扰动而偏离平衡位置时,如果外力或外力矩促使物体回到原平衡位置,这样的平衡叫稳定平衡,处于稳定平衡的物体,偏离平衡位置时,重心一般是升高的。不 稳 定 平 衡 处 于 平 衡 状 态 的 物体,当受到外界的扰动而偏离平衡位置时,如果外力或外力矩促使物体偏离原来的平衡位置,这样的平衡叫不稳定平衡,处于不稳定平衡的物体,偏离平衡位置时,重心一般是降低的。随遇平衡 处于平衡状态的物体,当受到外界扰动而偏离平衡位置时,物体受到的合外力或合力矩没有变化,这样的平衡叫随遇平衡,处于随遇平衡的物体,偏离平衡位置后,重心高度不变。
25、在平动方面,物体不同方面上可以处于不同的平衡状态,在转动方面,对不同方向的转轴可以处于不同的平衡状态。例如,一个位于光滑水平面上的直管底部的质点,受到平行于管轴方向的扰动时,处于随遇平衡状态;受到与轴垂直方向的扰动时,处于稳定平衡状态,一细棒,当它直立于水平桌面时,是不稳定平衡,当它平放在水平桌面时,是随遇平衡。1.6.3、稳度物体稳定的程度叫稳度,一般说来,使一个物体的平衡遭到破坏所需的能量越多,这个平衡的稳度就越高。稳度与重心的高度及支面的大小有关,重心越低,支面越大,稳度越大。1.7 流体静力学流体并没有一定的开头可以自由流动,但具有一定的密度,一般认为理想流高中物理竞赛 力学体具有不可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 力学 高中物理 资料汇编
限制150内