重庆市南川三校联盟2023年高考数学二模试卷含解析.pdf
《重庆市南川三校联盟2023年高考数学二模试卷含解析.pdf》由会员分享,可在线阅读,更多相关《重庆市南川三校联盟2023年高考数学二模试卷含解析.pdf(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3,请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.总体由编号为01,02,.39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如
2、表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()60666142440665356658544844053596216202321452415248926622158676637541995842367224A.23B.21C.35 D.322.已知实数集R,集合A=x l x ,则AC(CR3)=()I VX-2JA.x|lx2 B.x|1 x3 C.x|2x3 D.xl x0/0)的焦距为2 c,焦点到双曲线C的渐近线的距离为券c,则双曲线的渐近线方程为。A.y=土下 x B.y-+/2x C.y=x D.y=2x7.已知复数二满足z(l+i)=
3、4-3 i,其中i是虚数单位,则复数z在复平面中对应的点到原点的距离为(8.已知函数/(x)=cos2x+百sin2x+l,则下列判断错误的是()A.Ax)的最小正周期为万 B./(x)的值域为C.f(x)的图象关于直线,=看对称 D.7(x)的图象关于点(一?,0)对称9.设/为 定 义 在R上的奇函数,当xNO时,/(x)=log2(x+l)+o?一。+1(。为常数),则不等式/(3%+4)一5的解集为()A.(-oo,-l)B.(-1,+0/0)的左、右焦点,A 3是c的左、右顶点,点产在过月且斜率为立a b-4的直线上,2X2钻为等腰三角形,ZABP=1 2 0,则C的渐近线方程为()
4、行A.y=x B.y=2x C.j =x D.y=y/3x2 312.已知函数/()=/7+-2的零点为,”,若存在实数使f 一0V一Q+3=O且区1,则实数a的取值范围是()717 一A.2,4 B.2,-C.3 D.2,3二、填空题:本题共4小题,每小题5分,共20分。13.已 知 实 数,且 一。=匕 一/,由 加=_+幺的最大值是_2a b14 .已知 A(4,0),P(a,a+4),圆 0:f +y 2=4,直线 PM,P N 分别与圆。相切,切点为 M,N,若 MR=RN,则I A R|的最小值为.x+-3m16 .已 知 忖=20,”在 方 向 上 的 投 影 为 布,则 a 与
5、力的夹角为.三、解答题:共 7 0分。解答应写出文字说明、证明过程或演算步骤。17 .(12 分)如图,在平面直角坐标系直力中,以x 轴正半轴为始边的锐角a 的终边与单位圆。交于点A,且点A的纵坐标 是 典.10(1)求 co$(a-z j 的值:(2)若以x 轴正半轴为始边的钝角B的终边与单位圆。交于点B,且点B的横坐标为一冷,求 a +6的值.18 .(12 分)已知 0 Qg,函数/(x)=R sin(2 x+e)-cos?x.2 2(1)若 8 =5,求/(x)的单调递增区间;(2)若/(2)=-:,求 sin。的值.19 .(12 分)已知函数F(x)=,x3 +x2+2 a,G(x
6、)=a l n x,设/(x)=F (x)-G(x).6(1)当。=一3 时,求函数/(力的单调区间;(2)设方程r(x)=c(其中C 为常数)的两根分别为a,(a 4),证明:/“里 乎)l 时,g(x)0;(ID)确定a 的所有可能取值,使得f(x)g(x)在 区 间(1,+oo)内恒成立.22.(10分)在 0 4 8。中,角 4,B,C 的对边分别是a,b,c,且向量/=(2a c,Z?)与向量”=(cosC,cos8)共线.(1)求 B;(2)若 b=3 出,a=3,且 AZ)=2 O C,求 8。的长度.参考答案一、选择题:本题共12小题,每小题5 分,共 60分。在每小题给出的四
7、个选项中,只有一项是符合题目要求的。1.B【解析】根据随机数表法的抽样方法,确定选出来的第5 个个体的编号.【详解】随机数表第1行的第4 列和第5 列数字为4 和 6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,2 1,其中落在编号 01,02,.39,40 内的有:16,26,16,24,23,2 1,依次不重复的第5 个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.2.A【解析】0可得集合B,求出补集CRB,再求出A C(CRB)即可.【详解】由 J
8、 x-2 0,得x2,即 8=(2,+oo),所以 CRB=(F,2,所以 AC(C&8)=(1,2.故选:A【点睛】本题考查了集合的补集和交集的混合运算,属于基础题.3.C【解析】先用诱导公式得/。)=-sin(x-二=cosjx+,再根据函数图像平移的方法求解即可.【详解】函数/0)=-5皿卜一:1|=以%1+?)的图象可由丁=递减后递增._Sy.2T IT/T X.3 0 5ir _/x ,故选:c【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.4.A【解析】本道题绘图发现三角形周长最小时A,P位于同一水平线上【详解】结合题意,绘制图像COS X向左平移g个单位得到,如图所示J
9、(x)在宗江上先,计算点P的坐标,计算斜率,即可.要计算三角形P A F 周长最小值,即计算PA+PF最小值,结合抛物线性质可知,P F=P N,所以P F +P A=P A+P N A N A G,故当点P 运动到M 点处,三角形周长最小,故此时M的坐标为,所以斜1-0 _ 4率为 厂=一号,故选A.-14【点睛】本道题考查了抛物线的基本性质,难度中等.5.D【解析】将复数化简得z=l+2i1=1-22,即可得到对应的点为(1,-2),即可得出结果.【详解】z=二 =?+?。+?=l+2z=z=l-2z,对应的点位于第四象限.1-z(l-z)(l+z)故选:D.【点睛】本题考查复数的四则运算
10、,考查共轨复数和复数与平面内点的对应,难度容易.6.A【解析】2 26利用双曲线C:5-方=1(。0/0)的焦点到渐近线的距离为半C,求出。,。的关系式,然后求解双曲线的渐近线方程.【详解】双曲线C:0-营=1(4 0,。0)的焦点(。,0)到渐近线/”+故=0的距离为*,可得:=C,可得2 =立,-=73,则C的渐近线方程为旷=瓜.777 2 c 2 。故选A.【点睛】本题考查双曲线的简单性质的应用,构建出。力的关系是解题的关键,考查计算能力,属于中档题.7.B【解析】利用复数的除法运算化简Z,复数z在复平面中对应的点到原点的距离为|z|,利用模长公式即得解.【详解】由题意知复数-在复平面中
11、对应的点到原点的距离为I z|,4-3/(4-3 z)(l-z)1-7/1 7 .z=-=-=-=-1.1 +z 2 2 2 2考故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.8.D【解析】先将函数/(x)=cos2 x+G sin2 x+l化为/(x)=2 sin(2 x+l,再由三角函数的性质,逐项判断,即可得出结果.【详解】f(x)=cos 2 x4-V3 sin 2 x+1可得/(尤)=2 g.cos2 x+*.sin2 x+1=2 sin(2 x+)+l2 7 r 2JI对 于A,/(x)的最小正周期为T=;=
12、?=,故A正确;2对 于B,由一 可得1(无)3,故B正确;jr jr对 于C,正弦函数对称轴可得:2与+=攵)+一,(Ze Z)6 21 JT解得:/=Z +,(%Z),2 67T当=0,Xo=-,故C正确;6jr对 于D,正弦函数对称中心的横坐标为:2 Xo+=%;r,(keZ)61 jr解得:xo=-k.7T+,(k G Z)若 图 象 关 于 点 对 称,则=左 乃+二=f-2,解得x 2.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.10.D【解析】中位数指一串数据按从小(大)到 大(小)排列后,处在最中间的那个数,平均数
13、指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为80+x=8 6,故x=6;7 帖也出将将 78+82+8O+y+89+91+93+97 e c乙的平均数为-=88,解得y=6,所以x+y=12.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.11.D【解析】根据PA8为等腰三角形,NABP=120。可求出点尸的坐标,又由PR的斜率为也可得出a,c关系,即可求出渐4近线斜率得解.【详解】因为尸AB为等腰三角形,ZABP=nO,所以IPS|=|AB|=2a,ZPBM=60,:.xp=|PB|cos60+a=la,yp=|PB -sin 60=6 a,i
14、_ 拒a-0 _ 6乂 kpF=-二,PF,2a+c 42a=c/.3/=h2,解得2=6,a所以双曲线的渐近线方程为y=土 瓜,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.12.D【解析】易知/(x)单调递增,由/(I)=0可得唯一零点m=1,通过已知可求得0 W 4 2,则问题转化为使方程Y 一分 +3=0在区间 0,2上有解,化简可得。=x+l+j-2,借助对号函数即可解得实数”的取值范围.【详解】易知函数/(x)=e i+x 2单调递增且有惟一的零点为加=1,所以|1 一区1,.OWnWZ,问题转化为:使方程x2-ajc-a+3=0在区间 0,2上有解,即a=正 虫
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重庆市 南川 联盟 2023 年高 数学 试卷 解析
限制150内