整式的加减教学设计(优秀10篇).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《整式的加减教学设计(优秀10篇).docx》由会员分享,可在线阅读,更多相关《整式的加减教学设计(优秀10篇).docx(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、整式的加减教学设计(优秀10篇)整式的加减 篇一 教学目的 1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。 2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。 教学分析 重点:整式的加减运算。 难点:括号前是-号,去括号时,括号内的各项都要改变符号。 突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。 教学过程 一、复习 1、叙述合并同类项法则。 2、叙述去括号与添括号法则。 3、化简: y2+(x2+2xy-3y2)-(2x2-xy-2y2) 二、新授 1、引入 整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础
2、。 2、例题 例1 (P166例1) 求单项式5x2y,-2 x2y,2xy2,-4xy2的和。 分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。 解:(略,见教材P166) 例2(P166例2) 求3x2-6x+5与4x2-7x-6的和。 解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号) =3x2-6x+5+4x2-7x-6 (去括号) =7x2+x-1 (合并同类项) 例3。(P166例3) 求2x2+xy+3y2与x2-xy+2y2的差。 解:(2x2+xy+3y2)
3、-( x2-xy+2y2) =2x2+xy+3y2-x2+xy-2y2 =x2+2xy+y2 3、归纳整式加减的一般步骤。 整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。 三、练习 P167:1,2,3,4。 补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B 四、小结 1、文字叙述的整式加减,对每一个整式要添上括号。 2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。 五、作业 1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。 基础训练同步练习1。 整式的加减(
4、1) 教学目的 1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。 2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。 教学分析 重点:整式的加减运算。 难点:括号前是-号,去括号时,括号内的各项都要改变符号。 突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。 教学过程 一、复习 1、叙述合并同类项法则。 2、叙述去括号与添括号法则。 3、化简: y2+(x2+2xy-3y2)-(2x2-xy-2y2) 二、新授 1、引入 整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。 2、例题 例1 (P166例1) 求单项
5、式5x2y,-2 x2y,2xy2,-4xy2的和。 分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。 解:(略,见教材P166) 例2(P166例2) 求3x2-6x+5与4x2-7x-6的和。 解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号) =3x2-6x+5+4x2-7x-6 (去括号) =7x2+x-1 (合并同类项) 例3。(P166例3) 求2x2+xy+3y2与x2-xy+2y2的差。 解:(2x2+xy+3y2)-( x2-xy+2y2) =2x2+xy+
6、3y2-x2+xy-2y2 =x2+2xy+y2 3、归纳整式加减的一般步骤。 整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。 三、练习 P167:1,2,3,4。 补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B 四、小结 1、文字叙述的整式加减,对每一个整式要添上括号。 2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。 五、作业 1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。 基础训练同步练习1。 整式的加减教学设计 篇二 教学目标: 1、知识目标:使学
7、生在掌握合并同类项的基础上,掌握去括号法则;正确地进行简单的整式加减运算。 2、能力目标:培养学生基本的运算技巧和能力。 3、情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。 教学重点、难点: 重点:去括号法则。 教学 难点:正确运用去括号法则,减少运算中的符号错误。 教学用具:多媒体 教学过程 : (一)、情景引入 1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133 你出生于8月份,你家有3口人 2、猜数游戏的数学原理常常与代数式的运算有关 3、知识梳理 -2x+3y-4z 共有
8、 项,其中第三项是: 。 (1)写出 2a2b 的一个同类项: (2)已知4a2b3与a2mbn-1是同类项,则m= _,n=_. (二)实践应用, 拓展延 1、如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。 2、用分配律计算: (1) +(a-b+c) (2) -(a-b+c) 3、代数式运算的去括号法则: 括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号 4、顺口溜 去括号,看符号 是+号,不变号 是-号,全变号 5、辩一辩:指出下列各式是否正确?如果错误,请指出原因。 (1) a-(b-c+d)
9、= a-b+c+d (2) -(a-b)+(-c+d)= a+b-c-d (3) a-3(b-2c)=a-3b+2c (4) x-2(-y-3z+1)=x-2y+6z 6、注意:(1)去括号时应将括号前面的符号连同括号一起去掉。 (2)要注意括号前面是 -号时,去掉括号后, 括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号 (3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘。 7、练一练 整式的加减 篇三 第4课时教学内容: 教科书第6364页,2.2整式的加减:1.同类项。 教学目标和要求: 1.理解同类项的概念,在具体情景中,认识同类项。 2.通过小组讨论、合作学习
10、等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。 3.初步体会数学与人类生活的密切联系。 教学重点和难点: 重点:理解同类项的概念。 难点:根据同类项的概念在多项式中找同类项。 教学方法:分层次教学,讲授、练习相结合。 教学过程: 一、复习引入: 1、创设问题情境 、5个人+8个人= 、5只羊+8只羊= 、5个人+8只羊=(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。) 2、观察下列
11、各单项式,把你认为相同类型的式子归为一类。 8x2y, mn2, 5a, x2y, 7mn2, , 9a, , 0, 0.4mn2, ,2xy2。 由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。 要求学生观察归为一类的式子,思考它们有什么共同的特征? 请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。 (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。) 二、讲授新课: 1.同类项的定义: 我们常常把具有相同特征的事物归为
12、一类。8x2y与x2y可以归为一类,2xy2与 可以归为一类,mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有 、0与 也可以归为一类。8x2y与x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与 也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2。 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(similar terms)。另外,所有的常数项都是同类项。比如,前面提到的 、0与 也是同类项。通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称
13、它们为同类项。(板书课题:同类项。)(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。2.例题: 例1:判断下列说法是否正确,正确地在括号内打“”,错误的打“”。 (1)3x与3mx是同类项。 ( ) (2)2ab与5ab是同类项。 ( ) (3)3x2y与 yx2是同类项。 ( ) (4)5ab2与2ab2c是同类项。 ( ) (5)23与32是同类项。 ( ) (这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项。一部
14、分学生可能会单看指数不同,误认为不是同类项。) 例2:游戏: 规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。 要求出题同学尽可能使自己的题目与众不同。 可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。 (学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征。学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。) 例3:指出下列多项
15、式中的同类项: (1)3x2y13y2x5; (2)3x2y2xy2 xy2 yx2。 解:(1)3x与2x是同类项,2y与3y是同类项,1与5是同类项。 (2)3x2y与 yx2是同类项,2xy2与 xy2是同类项。 例4:k取何值时,3xky与x2y是同类项? 解:要使3xky与x2y是同类项,这两项中x的次数必须相等,即 k2。所以当k2时,3xky与x2y是同类项。 例5:若把(st)、(st)分别看作一个整体,指出下面式子中的同类项。 (1) (st) (st) (st) (st); (2)2(st)3(st)25(st)8(st)2st。 解:略。 (组织学生口头回答上面三个例题,
16、例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备。例4让学生明确同类项中相同字母的指数也相同。例5必须把(st)、(st)分别看作一个整体。) (通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力。) 6.课堂练习:请写出2ab2c3的一个同类项。你能写出多少个?它本身是自己的同类项吗? (学生先在课本上解答,再回答,若有错误请其他同学及时纠正。)三、课堂小结:理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。这堂课运用到分类思想和整体思想等数学思想方
17、法。学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法的总结与运用。采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳能力和表达能力,提高学生学习的积极性和主动性。)四、课堂作业:若2amb2m+3n与a2n3b8的和仍是一个单项式,则m与 n的值分别是_板书设计: 同类项1.同类项的定义: 2.例: 例: 学生练习: 教学后记:建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更清楚地
18、认识同类项。在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。 整式的加减 篇四 第6课时教学内容: 课本第66页至第68页。 教学目标 1.知识与技能 能运用运算律探究去括号法则,并且利用去括号法则将整式化简。 2.过程与方法 经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。 3.情感态度与价值观 培养学生主动探究、合作交流的意识,严谨治学的学习态度。 重、难点与关键 1.重点:去括
19、号法则,准确应用法则将整式化简。 2.难点:括号前面是“”号去括号时,括号内各项变号容易产生错误。 3.关键:准确理解去括号法则。 教学过程 一、新授 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢? 现在我们来看本章引言中的问题(3): 在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t0.5)千米,因此,这段铁路全长为 100t+120(t0.5)千米 冻土地段与非冻土地段相差 100t120(t0.5)千米 上面的式子、都带有括号,它们
20、应如何化简? 思路点拨:教师引导,启发学生类比数的运算,利用分配律。学生练习、交流后,教师归纳: 利用分配律,可以去括号,合并同类项,得: 100t+120(t0.5)=100t+120t+120(0.5)=220t60 100t120(t0.5)=100t120t120(0.5)=20t+60 我们知道,化简带有括号的整式,首先应先去括号。 上面两式去括号部分变形分别为: +120(t0.5)=+120t60 120(t0.5)=120+60 比较、两式,你能发现去括号时符号变化的规律吗? 思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示: 如果括号外的
21、因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 特别地,+(x3)与(x3)可以分别看作1与1分别乘(x3). 利用分配律,可以将式子中的括号去掉,得: +(x3)=x3 (括号没了,括号内的每一项都没有变号) (x3)=x+3 (括号没了,括号内的每一项都改变了符号) 去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项。 二、范例学习 例1.化简下列各式: (1)8a+2b+(5ab); (2)(5a3b)3(a22b). 思路点拨:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式 加减 教学 设计 优秀 10
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内