一元二次方程根的两个特性及简单运用中学教育中学学案中学教育中学课件.pdf
《一元二次方程根的两个特性及简单运用中学教育中学学案中学教育中学课件.pdf》由会员分享,可在线阅读,更多相关《一元二次方程根的两个特性及简单运用中学教育中学学案中学教育中学课件.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为 1 的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0)axbxca 的两根之和、两根之积与系数的关系。例 1、先阅读,再填空解题:(1)方程:x2-4x-12=0 的根是:x1=6,x2=-2,则 x1+x2=4,x1x2=-12;(2)方程 2x2-7x+3=0 的根是:x1=12,x2=3,则 x1+x2=72,x1x2=32;(3)方程 3x2+6x-2=0 的根是:x
2、1=,x2=.则 x1+x2=,x1x2=;根据以上(1)(2)(3)你能否猜出:如果关于 x 的一元二次方程 ax2+bx+c=0(a0 且 a、b、c 为常数)的两根为 x1、x2,那么 x1+x2、x1x2与系数 a、b、c 有什么关系?请写出来你的猜想并说明理由。解析:方程 3x2+5x-2=0 的根是:x1=13 x2=-2。则 x1+x2=53,x1x2=23。能猜出:如果关于 x 的一元二次方程 ax2+bx+c=0(a0 且 a、b、c 为常数)的两根为 x1、x2,那么 x1+x2ab、x1x2ac。理由如下:根据求根公式可知,关于 x 的一元二次方程 ax2+bx+c=0(
3、a0 且 a、b、c为常数)的两根为:aacbbx2421,aacbbx2422 所以 x1+x2=aacbb242+aacbb242ab x1x2=aacbb242aacbb242ac 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商 下面我们再来探索一元二次方程根的另一个特性。例 2、计算并观察下列一元二次方程根的特点:(1)x2-x-3=0 (2)2x2-8x+5=0 (3)x2-3x+1=0 观察以上(1)(2)(3)的解,你能否猜出:如果关于 x 的一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 两个 特性 简单 运用 中学 教育 课件
限制150内