面向边缘智能的联邦学习综述-2023.07-20页-WN7.pdf
《面向边缘智能的联邦学习综述-2023.07-20页-WN7.pdf》由会员分享,可在线阅读,更多相关《面向边缘智能的联邦学习综述-2023.07-20页-WN7.pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Unv1,20Z_10Z3011oo|b0W01000932ozy0W01000493OAn Overview of Federated Learning in Edge IntelligenceZhangXueqing1,2,LiuYanwei1,LiuJinxia3,andHanYanni11Institute of Information Engineering,Chinese Academy of Sciences,Beijing 1000932School of Cyber Security,University of Chinese Academy of Sciences,Beij
2、ing 1000493Zhejiang Wanli University,Ningbo,Zhejiang 315100Abstract0Withtheincreasingdemandofedgeintelligence,federatedlearning(FL)hasbeennowofgreatconcerntotheindustry.Comparedwiththetraditionallycentralizedmachinelearningthatismostlybasedoncloudcomputing,FLcollaborativelytrainstheneuralnetworkmode
3、loveralargenumberofedgedevicesinadistributedway,withoutsendingalargeamountoflocaldatatothecloudforprocessing,whichmakesthecompute-extensivelearningtaskssunktotheedgeofthenetworkclosedtotheuser.Consequently,theusers9datacanbetrainedlocallytomeettheneedsoflowlatencyandprivacyprotection.Inmobileedgenet
4、works,duetothelimitedcommunicationresourcesandcomputingresources,theperformanceofFLissubjecttotheintegratedconstraintoftheavailablecomputationandcommunicationresourcesduringwirelessnetworking,andalsodataqualityinmobiledevice.Aimingfortheapplicationsofedgeintelligence,thetoughchallengesforseekinghigh
5、efficiencyFLareanalyzedhere.Next,theresearchprogressesinclientselection,modeltrainingandmodelupdatinginFLaresummarized.Specifically,thetypical work in data unloading,model segmentation,model compression,model aggregation,gradient descentalgorithmoptimizationandwirelessresourceoptimizationarecomprehe
6、nsivelyanalyzed.Finally,thefutureresearchtrendsofFLinedgeintelligenceareprospected.Key words0federatedlearningedgecomputingedgeintelligencemodelaggregationresourceconstraints|00wnnfederatedlearningFLors.No_nOn_qnkOowuorvuovNwOwn,wuoowuo.Ounga1_uov.oUYVOmnszwnw1kNkso|gn.w2021-11-082022-09-16w61771469
7、oNobb_HZ2021015This work was supported by the National Natural Science Foundation of China(61771469)and the Cooperation Project Between ChongqingMunicipalUndergraduateUniversitiesandInstitutesAffiliatedtoCAS(HZ2021015)._Z_|N DOI10.7544/issn1000-1239.202111100JournalofComputerResearchandDevelopment60
8、61276212952023s0nkoV0TP3wonr_ucg1.no,21314N5.uovn.onuoov.uuo1VguonbouorvoOW.g5G o_umobileedgecomputingMEC61NrOruovNwO_wOn.MEC oNo_oUV._oo_UMEC Om1oov1r_u_g.MEC V_o.OonoVTuorw1y.bouoNnuokO_.FLfederatedlearning,FL7-8o.uOqouoFL k1V_r.FL V_nkMEC OV_NnwNoowuokuNouo1uONnw.1 UO FL y.ugWwaa1Wowuo_1_v_uoO FL
9、 wsz.YoFL _nowuooooOuoorNnoOow_uonqkkOow9.Osz MEC gFL_.uoOrooOuko_Wk_o FL ON.w k FL W O stochasticgradientdescentSGD10gkNn_NouoOwuckkw_s_roo FL oNns.kOuN_uo11No_guoqkoNnwoszg.sz|u|NON|uV.|Vn 1 bFL Nu.No FL _szY FL ovww1k_Wo1kono FL soogO FL|.10FL ovjwjf(w,xj,yj),xjyjjxjyjFL oNV_ng_uoo.FL okuNu.nouok
10、.nwkonuoo uUNOyu.yuwokknouooNyug_W.o yuOwoUo 1nuoo 2 nrV.nkuok.D1,D2,Di,DKDkWo K nowuoV.n K uowyuvUn1277Fk(w)=1|Dk|jDkfj(w),(1)fj(w)f(w,xj,yj)woooboV_uoNOyuF(w)=jUk|Dk|fj(w)?kk=1?Dk|=Kk=1|Dk|Fk(w)Kk=1|Dk|,(2)|Dk|kDkD=Kk=1Dk|D|=Kk=1|Dk|F(w)wow Su.krg_WyuOrgung_Wyuw=argminF(w).(3)uuoV_OwFL Oo_nNooNr.O
11、gg_Wyyusw(t):=w(t1)F(w(t1)=Kk=1|Dk|wk(t)Kk=1|Dk|,(4)F()w(t)twk(t)ktwo oNn_kusn.oyu.ooo yuow owuwk(t)=w(t1)Fk(w(t1).(5)Fk(w(t1)w(t)Ooo.oowrTable 10Comparison of Studies on Existing FederatedLearning Reviews 1 on|_Wv_Wn 11:FL 12:13:14 FL 15:o:=or_=oor_.&ykykoowkNoowkowkowkowkowkwwwwwD2DD2DD2D(_)(O_)(_
12、)(O_)(_)UAV_V2VFig.10Edgeintelligentfederatedlearningarchitecture10n1278|N0202360 6oowo_Nwouo.20FL woo_Oouo.N_oo_ON FL.o_uooV_m.NNn_kaoNoroTa._gOv_16k.ugvOFL N|12.kc_s.N|_W_gNnw.Jin 17_w_OkwNnn_qvN.OoO FedAvg7O_VwNk.Chai 18owgwRVOoNowuuo_gk_.Chai 18 TiFL oNo FL.Nnnoky_ 1 nvnwvwouowwk.uuobowr 1 ko_W_
13、o_o.19NFL VvN_gk.20 N.Y_sN_rNnwo_gNo FL ouo FL.nul1Nw_gsug.FL ongNo_w_wOV.|Vog_W FLOsoWkn.Xu 21Nng FL ornONgnowOoOOwV_W_ogg.owwwcb_o22-23o24nv.w_ 2 b.Nishio 25Nn FL w_s FedCS.FedCSw FL _oO1NonkNnouowunmb.FedCS FL NO_OuuoV_g.nYoshida26FedCS krvNOuoV_FLhybridfederatedlearningHybrid-FL_.Hybrid-FL _oouo
14、nNovQNouo.Nw_wNouoovouoorNnV_uo.nN FedCS so1%NquoHybrid-FL V_o.wHybrid-FL NowuoV_o_wyoNovo_uoy.wwouoo_y.OO_OoNouoow_.oNuow_vN FL Z27.Kang 28_k.FL gn_woowuowY_N.n_kNwVuVugw_VurrNno.wVuuOW_Oqw_._Novo_owovUn1279ww_y.V_VodistributedledgertechnologyDLT_o._cowkaon_kaokaowowV_Vo.owV_V DLT Nw_Vo_Wovo1oe_g29
15、.ruoV_ FL gLi 30Nnggws q-FedAvg.q-FedAvgg_Vg_gg FedAvg uyuogV_NOo_gV_.31Nn_WNm_oco FL_uN Stackelberg_kv|_wN FL.wO|wooO1cO.WwooouuoWnyoO.NoOc.NN_N_|wogoOk15.o_owuooV_nm.Nw_wovVo.32 Nno FL k.rNvwgg FLg_Wro.OowOw_Wo CPU|FL ng_W.O 32 n 33nwuo_1uoV_|oo FLNRL WvuoboN FL.NNr Stackelberg _YvOWvQwwTo34.w_VoN
16、osvgsNowo FL c.o_WovvyuoV_sowgg.wkuoNnwouSugkWWgwNWN FL Ou_go FL _W.2_o FL w.d _We nf wg Vd Noe kkykVonACKACKFig.20FedCSprotocoloverview20FedCS _1280|N0202360 6Table 20Comparison of Federated Learning Client Selection Schemes 2 nwhhhwoooN_WVOk171wV181vn_191n201OV211n251_26vYv28_Nn_gWuyNwO_bStackelbe
17、rg _31myk_srosroOuWv32-33gwOworo_rog_Worooug30_ugO q-FedAvg oVggwoyow_ 30k_Wuv1v1wnOgV_owuo FL k.|kosuovuorw_vowuouoogO.uows_kv FL okukO.3.10uouvn_quo.uo|35oNquoouoonko._uo|o 3 1|.uooomwVuo.o_r|ozunuoNkss.Oo|uo.2.uofrOzuogfzoOnmwouom.3uo.N_ 2 uoozNn_uooo FL o_uo_uov.uo|_FL_OwuooV_Nwwqowuo|m.uo_rooo
18、FL 36.uou_or.FL nNvgoOuuo.rnuoWo_Os 37 _WuoWom_gngOo_WW_ FL ouoN.NnuovguooOo_gnO.38|Nnnkuo_WgnmOg_o.Oo 38 ouNnn_r._.FL oobo_o_wk.wqooOw_.qoo_WNnVON.O_.3.20kVrOuokkws._kWnVrrV_n_NnskVr.kVroN._oORVkvUn1281mV_NgVroN39-41.Yowuuocwcuoo.OokVr_wvuoovOr.okVr_WkgORVk_VrvoN.wokNO_kVruzo.42 _oONrouOnroNoO.wug1
19、goOo_aWugg_uoVn 43 kugw_oNOoawZkVr.kVrVkkoOuoo 44 _uooOVrk ARDEN g.ARDEN _NgWuocwruoo_uNvOkVNg.onwqNnkg FLk.Zhang 45kVroVN FL federatedlearningschemeinmobileedgecomputing,FedMECoNykVr FL w_n 3 b.FedMEC NnV 2 VYwkokgko._ouorvkku.ouowkryOowkykyokrwFig.30Modelsegmentationmigrationframework30kVrnokVroOm
20、 FL oO_Ns_V 2 VwoV_ro.o_VkNoroO_Vvguo._kVrowZrkOowVvkkVrouowgky.w 39245 o|owgN.3.30kwwSoWOwruluzvk FL rNn.o 2 n1NnuWSroNnkw_s.2kO_m.o FL _oNomonkr FL o46.k_k_1Ov.o_kmogNk_rk47.gV_ok1282|N0202360 6g_Wkaoom.3 oko.48WoNor FL okuo.W_vNYgsOy.OogkvNnO 2 n.NnorNocONn_W.o_Wro._ogNoO_uoyoO_uoy.48 xN 49 k|2 u
21、gorw1orwykNo2Qwykg_Nwroow.unwNwN FL goO.50 46249 Nog|OnUoO.50 omu.48250|koNOroOroOwkzr.o_Wo|wo_OvrOu FL NO|.FL NckugOro.|gkocJeong 51bcOokuokQ_kk.xNV_uo 51 Nruos.OO_o_.ovWxN.Nuogrsz.Ahn 52ONVyhybrid-federateddistillation,HFD.yoozv.u_kHFD vo_o FLNvNkWoNqOOHFD uoo FL uoy_|.4 _ FL k_W.Table 30Summary o
22、f Model Compression Techniques 3 ko_Wk_Wv48okWwromwrouogkwo-w49okWorwmorwuogOow50ukwgggwkwNzwWgmgWrAdam1 Adam _Wh FedAvg Adam _WwhO_k51-52ckkaoswom_ouwguoV_okTable 40Optimization Methods and Characteristics ofModel Training 4 k_W_Wguook 36238kVrVrko 42244kOk|vo|48252 40Oko FL ok FL wowwUoNokusy.kokk
23、y._wvUn1283Wy1kgOgs.kon_W_o.ok|_ 3 n_W1yownOg_oNOg_Wkyu2_WOgO_3vawuVNoO.o_u FL okog|_m FL oWg_Wog FL yk.4.10ko_ FL OngOukug_WowuoNOyu.wOkuruuo1SvNQ.uwruyuON7.yoNnvnowau53.7 FedAvg kwNow SGD NgkWokku.k_ykunW_vykwg54_wg55-56.55 FedAvg Nn_W FedProx.FedProx NnkowkykO_g.OoFedProx okuykO._57-58go|on_vvo.o
24、_u_Og1wny1voNk59-62.wuoO FL kb.FL oszWang 63NkvVwoV_uoFL w._aOvykkONvog_Wwoyu.kNoNO_ok_.4 oyOg_WnykoawuyOg_Wny.63|nyug_WW_OoOgOo.w 63 _oogOo_v.o_OOouoWny1_w_ FL Oo.64 wa_Womw ACFLACFL ogwq_1(a)owkkNovO(b)k_2_3_4&_NFig.40Comparisonofadaptivemodelaggregationandfixedfrequencyaggregation40kN1284|N020236
25、0 6o.o_ouoV_WOonyVwg.FL k_Liu65No_oNw44Vnhierarchicalfederatedaveraging HierFAVG oog 2 wN FL ks.No FL u_uoHierFAVG omw.HierFAVG oN FLNomk_.7,53265|_gO_WkOuO_g._g_WOnV1nk1n1g_Wyg_WwooO.66 Nn_NmgV_n_Wk_V_nVn.wo_r_wuV_nV.67 rO_ngWOVO CuFL g FL bo_wn.No_owkNn_kokg.ko_n_ FL.woOro_o.MEC o_Wy.MEC oNu_uNnug
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 面向 边缘 智能 联邦 学习 综述 2023.07 20 WN7
限制150内