23双曲线标准方程动态演示课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《23双曲线标准方程动态演示课件.ppt》由会员分享,可在线阅读,更多相关《23双曲线标准方程动态演示课件.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3(2).12.3(2).1双曲线及其标准方程双曲线及其标准方程正在建设中金沙江上的正在建设中金沙江上的溪洛渡水电站溪洛渡水电站:双曲拱坝双曲拱坝双曲线型自然通风冷却塔双曲线型自然通风冷却塔F2F1MxOy生活中的生活中的双曲线双曲线1.1.椭圆的定义椭圆的定义和和 等于常数等于常数2a(2a|F1F2|0)的点的轨迹的点的轨迹.平面内与两定点平面内与两定点F1、F2的距离的的距离的2.引入问题:引入问题:差差等于常数等于常数的点的轨迹是什么呢?的点的轨迹是什么呢?平面内与两定点平面内与两定点F1、F2的距离的的距离的复习复习双曲线图象双曲线图象拉链拉链双曲线双曲线|MF1|+|MF2|=
2、2a(2a|F1F2|0)问题问题2:如果把上述定义改为:如果把上述定义改为:到两定点到两定点 距离之距离之差差为常数为常数,那么点的轨迹会发生怎样的变化?那么点的轨迹会发生怎样的变化?实验探究如图如图如图如图(A)(A),|MF|MF1 1|-|MF|MF2 2|=|F|=|F2 2F F1 1|=2|=2a a如图如图如图如图(B)(B),上面上面上面上面 两条合起来叫做双曲线两条合起来叫做双曲线两条合起来叫做双曲线两条合起来叫做双曲线由由由由可得:可得:可得:可得:|MF|MF1 1|-|MF|MF2 2|=2|=2a a (差的绝对值)差的绝对值)|MF|MF2 2|-|MF|MF1
3、1|=|F|=|F1 1F F2 2|=2|=2a a 两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=2c 焦距焦距.(1)2a0;双曲线定义双曲线定义思考:思考:(1)若)若2a=2c,则轨迹是什么?则轨迹是什么?(2)若)若2a2c,则轨迹是什么?则轨迹是什么?说明说明(3)若)若2a=0,则轨迹是什么?则轨迹是什么?|MF1|-|MF2|=2a(1)两条射线两条射线(2)不表示任何轨迹不表示任何轨迹(3)(3)(3)(3)线段线段线段线段F F F F1 1 1 1F F F F2 2 2 2的垂直平分线的垂直平分线的垂直平分线的垂直平分线F2F1MxOy求曲线方程的
4、步骤:求曲线方程的步骤:双曲线的标准方程双曲线的标准方程1.1.建系建系.以以F1,F2所在的直线为所在的直线为x轴,线段轴,线段F1F2的中点为原点建立直角坐标系的中点为原点建立直角坐标系2.2.设点设点设设M(x,y),则则F1(-c,0),F2(c,0)3.3.列式列式|MF1|-|MF2|=2a4.4.化简化简此即为此即为焦点在焦点在x轴上的轴上的双曲线双曲线的标准的标准方程方程F2F1MxOyOMF2F1xy若建系时若建系时,焦点在焦点在y轴上呢轴上呢?看看 前前的的系数,哪一个为正,系数,哪一个为正,则在哪一个轴上则在哪一个轴上2 2、双曲线的标准方程与椭圆的标准方程有何区、双曲线
5、的标准方程与椭圆的标准方程有何区、双曲线的标准方程与椭圆的标准方程有何区、双曲线的标准方程与椭圆的标准方程有何区别与联系别与联系别与联系别与联系?1 1、如何判断双曲线的焦点在哪个轴上?、如何判断双曲线的焦点在哪个轴上?、如何判断双曲线的焦点在哪个轴上?、如何判断双曲线的焦点在哪个轴上?问题问题定定 义义 方方 程程 焦焦 点点a.b.c的关的关系系F(c,0)F(c,0)a0,b0,但,但a不一不一定大于定大于b,c2=a2+b2ab0,a2=b2+c2双曲线与椭圆之间的区别与联系双曲线与椭圆之间的区别与联系双曲线与椭圆之间的区别与联系双曲线与椭圆之间的区别与联系|MF1|MF2|=2a|M
6、F1|+|MF2|=2a 椭椭 圆圆双曲线双曲线F(0,c)F(0,c)练习练习1.判断下列方程是否表示双曲线,若是,判断下列方程是否表示双曲线,若是,求出三量求出三量 a,b,c 的值的值(1)(2)(3)(4)练习练习练习练习2.写出以下双曲线的焦点坐标写出以下双曲线的焦点坐标F(5,0)F(0,5)例题讲解例题讲解变式变式2答案答案写出适合下列条件的双曲线的标准方程写出适合下列条件的双曲线的标准方程写出适合下列条件的双曲线的标准方程写出适合下列条件的双曲线的标准方程练习练习31.a=4,b=3,焦点在焦点在x轴上轴上;3.焦点在焦点在x轴上,经过点轴上,经过点4.a=4,过点过点(1,)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 23 双曲线 标准 方程 动态 演示 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内