八年级上册数学复习知识点总结人教版小学教育小学考试小学教育小学教育.pdf
《八年级上册数学复习知识点总结人教版小学教育小学考试小学教育小学教育.pdf》由会员分享,可在线阅读,更多相关《八年级上册数学复习知识点总结人教版小学教育小学考试小学教育小学教育.pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 1 全等三角形的对应边、对应角相等 2 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 3 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 4 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 5 边边边公理(SSS)有三边对应相等的两个三角形全等 6 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 7 定理 1 在角的平分线上的点到这个角的两边的距离相等 8 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 9 角的平分线是到角的两边距离相等的所有点的集合 10 等腰三角形的性质定理 等腰三角形
2、的两个底角相等(即等边对等角)21 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 23 推论 3 等边三角形的各角都相等,并且每一个角都等于60 24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25 推论 1 三个角都相等的三角形是等边三角形 26 推论 2 有一个角等于 60 的等腰三角形是等边三角形 27 在直角三角形中,如果一个锐角等于 30 那么它所对的直角边等于斜边的一半 28 直角三角形斜边上的中线等于斜边上的一半 29 定理 线段垂直平分线上的点和这条线段两个
3、端点的距离相等 30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 学习必备 欢迎下载 32 定理 1 关于某条直线对称的两个图形是全等形 33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 34 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 35 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 36 勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即a2+b2=c2 37 勾股定理的
4、逆定理 如果三角形的三边长 a、b、c 有关系 a2+b2=c2,那么这个三角形是直角三角形 38 定理 四边形的内角和等于 360 39 四边形的外角和等于 360 40 多边形内角和定理 n 边形的内角的和等于(n-2)180 41 推论 任意多边的外角和等于 360 42 平行四边形性质定理 1 平行四边形的对角相等 43 平行四边形性质定理 2 平行四边形的对边相等 44 推论 夹在两条平行线间的平行线段相等 45 平行四边形性质定理 3 平行四边形的对角线互相平分 46 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 47 平行四边形判定定理 2 两组对边分别相等的四边
5、形是平行四边形 48 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 49 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 50 矩形性质定理 1 矩形的四个角都是直角 边角公理有两角和它们的夹边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等斜边直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角推论等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线底边上的中线和底边上的高互相重合推论
6、所对的边也相等等角对等边推论三个角都相等的三角形是等边三角形推论有一个角等于的等腰三角形是等边三角形在直角三角形中如果一个锐角等于那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定学习必备 欢迎下载 51 矩形性质定理 2 矩形的对角线相等 52 矩形判定定理 1 有三个角是直角的四边形是矩形 53 矩形判定定理 2 对角线相等的平行四边形是矩形 54 菱形性质定理 1 菱形的四条边都相等 55 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 56 菱形面积=对角线乘积的一半,即 S=(a b)2 57 菱形判定定理 1 四边都相等的四边形是菱形 5
7、8 菱形判定定理 2 对角线互相垂直的平行四边形是菱形 59 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 60 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 61 定理 1 关于中心对称的两个图形是全等的 62 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 63 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 64 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 65 等腰梯形的两条对角线相等 66 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
8、67 对角线相等的梯形是等腰梯形 68 平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 69 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 边角公理有两角和它们的夹边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等斜边直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角推论等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线底边上的中线和底边上的高互相重
9、合推论所对的边也相等等角对等边推论三个角都相等的三角形是等边三角形推论有一个角等于的等腰三角形是等边三角形在直角三角形中如果一个锐角等于那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定学习必备 欢迎下载 70 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)2 S=Lh 73(1)比例的基本性质 如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么 a:b=c:d 74(2)合比性质 如果
10、 ab=cd,那么(a b)b=(c d)d 75(3)等比性质 如果 ab=cd=m n(b+d+n0),那么 (a+c+m)(b+d+n)=a b 76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的
11、三角形与原三角形相似 81 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 83 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)边角公理有两角和它们的夹边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等斜边直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角推论等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线底边上的中线
12、和底边上的高互相重合推论所对的边也相等等角对等边推论三个角都相等的三角形是等边三角形推论有一个角等于的等腰三角形是等边三角形在直角三角形中如果一个锐角等于那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定学习必备 欢迎下载 84 判定定理 3 三边对应成比例,两三角形相似(SSS)85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 86 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 87 性质定理 2 相似三角形周长的比等于相似比 88 性质定理 3 相似三角形面积
13、的比等于相似比的平方 89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 90 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值 91 圆是定点的距离等于定长的点的集合 92 圆的内部可以看作是圆心的距离小于半径的点的集合 93 圆的外部可以看作是圆心的距离大于半径的点的集合 94 同圆或等圆的半径相等 95 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 96 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线 97 到已知角的两边距离相等的点的轨迹,是这个角的平分线 98 到两条平行线距离相等的点的
14、轨迹,是和这两条平行线平行且距 离相等的一条直线 边角公理有两角和它们的夹边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等斜边直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角推论等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线底边上的中线和底边上的高互相重合推论所对的边也相等等角对等边推论三个角都相等的三角形是等边三角形推论有一个角等于的等腰三角形是等边三角形在直角三角形中如果一个锐角等于那么它所对的直角
15、边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定学习必备 欢迎下载 99 定理 不在同一直线上的三点确定一个圆。100 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 101 推论 1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 102 推论 2 圆的两条平行弦所夹的弧相等 103 圆是以圆心为对称中心的中心对称图形 104 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 105 推论 在同圆或等圆中,如果两个圆心
16、角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 106 定理 一条弧所对的圆周角等于它所对的圆心角的一半 107 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 108 推论 2 半圆(或直径)所对的圆周角是直角;90 的圆周角所 对的弦是直径 109 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 110 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 111直线 L 和O 相交 dr 直线 L 和O 相切 d=r 直线 L 和O 相离 dr 边角公理有两角和它们的夹边对应相等的
17、两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等斜边直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角推论等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线底边上的中线和底边上的高互相重合推论所对的边也相等等角对等边推论三个角都相等的三角形是等边三角形推论有一个角等于的等腰三角形是等边三角形在直角三角形中如果一个锐角等于那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定学习必备 欢迎下载 112 切
18、线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 113 切线的性质定理 圆的切线垂直于经过切点的半径 114 推论 1 经过圆心且垂直于切线的直线必经过切点 115 推论 2 经过切点且垂直于切线的直线必经过圆心 116 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 117 圆的外切四边形的两组对边的和相等 118 弦切角定理 弦切角等于它所夹的弧对的圆周角 119 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 120 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 121 推论 如果弦与直径垂直相交,
19、那么弦的一半是它分直径所成的 两条线段的比例中项 122 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 123 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 124 如果两个圆相切,那么切点一定在连心线上 125两圆外离 dR+r 两圆外切 d=R+r 两圆相交 R-rdR+r(R r)两圆内切 d=R-r(Rr)两圆内含 dR-r(Rr)126 定理 相交两圆的连心线垂直平分两圆的公共弦 边角公理有两角和它们的夹边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的
20、两个三角形全等斜边直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角推论等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线底边上的中线和底边上的高互相重合推论所对的边也相等等角对等边推论三个角都相等的三角形是等边三角形推论有一个角等于的等腰三角形是等边三角形在直角三角形中如果一个锐角等于那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定学习必备 欢迎下载 127 定理 把圆分成 n(n3):依次连结各分点所得的多边形是这个圆的内接正 n 边形 经过各分点
21、作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 128 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 129 正 n 边形的每个内角都等于(n-2)180 n 130 定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形 131 正 n 边形的面积 Sn=pnrn 2 p 表示正 n 边形的周长 132 正三角形面积3a 4 a 表示边长 133 如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360,因此 k(n-2)180 n=360 化为(n-2)(k-2)=4 134 弧长计算公式:L=n 兀 R180
22、135 扇形面积公式:S 扇形=n 兀 R2 360=LR 2 136 内公切线长=d-(R-r)外公切线长=d-(R+r)例题:1、一次函数:若两个变量 x,y 存在关系为 y=kx+b(k0,k,b为常数)的形式,则称 y 是 x 的函数。注意:(1)k0,否则自变量 x 的最高次项的系数不为 1;(2)当 b=0 时,y=kx,y 叫 x 的正比例函数。2、图象:一次函数的图象是一条直线 (1)两个常有的特殊点:与 y 轴交于(0,b);与 x 轴交于(-,0)。(2)正比例函数 y=kx(k0)的图象是经过(0,0)和(1,k)的一条直线;一次函数 y=kx+b(k0)的图象是经过(-
23、,0)和(0,b)的一条直线。(3)由图象可以知道,直线 y=kx+b 与直线 y=kx 平行,例如直线:y=2x+3 与直线 y=2x-5都与直线 y=2x 平行。3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:边角公理有两角和它们的夹边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等斜边直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角推论等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上册 数学 复习 知识点 总结 人教版 小学教育 小学 考试
限制150内