初二数学教育教案七篇.docx
《初二数学教育教案七篇.docx》由会员分享,可在线阅读,更多相关《初二数学教育教案七篇.docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 初二数学教育教案七篇 教学目标 1、学问与力量: 1) 进一步稳固相像三角形的学问. 2)能够运用三角形相像的学问,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题. 2.过程与方法: 经受从实际问题到建立数学模型的过程,进展学生的抽象概括力量。 3.情感、态度与价值观: 1)通过利用相像形学问解决生活实际问题,使学生体验数学来源于生活,效劳于生活。 2)通过对问题的探究,培育学生仔细踏实的学习态度和科学严谨的学习方法,通过获得胜利的阅历和克制困难的经受,增进数学学习的信念。 (三)教学重点、难点和关键 重点:利用相像三角形的学问解决实际问题。 难点:运
2、用相像三角形的判定定理构造相像三角形解决实际问题。 关键:将实际问题转化为数学模型,利用所学的学问来进展解答。 【教法与学法】 (一)教法分析 为了突出教学重点,突破教学难点,根据学生的认知规律和心理特征,在教学过程中,我采纳了以下的教学方法: 1.采纳情境教学法。整节课围绕测量物体高度这个问题绽开,根据从易到难层层推动。在数学教学中,注意创设相关学问的现实问题情景,让学生充分感知“数学来源于生活又效劳于生活”。 2.贯彻启发式教学原则。教学的各个环节均从提出问题开头,在师生共同分析、争论和探究中绽开学生的思路,把启发式思想贯穿与教学活动的全过程。 3.采纳师生合作教学模式。本节课采纳师生合作
3、教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同到达教学目标。教师要当好“导演”,让学生当好“演员”,从充分敬重学生的潜能和主体地位动身,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有时机进展独立思索,相互磋商,并发表意见。 (二)学法分析 根据学生的熟悉规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采纳自主探究、合作沟通的学习方式,让学生思索问题、猎取学问、把握方法,运用所学学问解决实际问题,启发学生从书本学问到社会实践,学以致用,力求促使每个学生都在原有的根底上得到有效的进展。 【教学过程】 一、学问梳理
4、1、推断两三角形相像有哪些方法? 1)定义: 2)定理(平行法): 3)判定定理一(边边边): 4)判定定理二(边角边): 5)判定定理三(角角): 2、相像三角形有什么性质? 对应角相等,对应边的比相等 (通过对学问的梳理,帮忙学生形成自己的学问构造体系,为解决问题储藏理论依据。) 二、情境导入 胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低 。 古希腊,有一位宏大的科学
5、家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,由于很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗? (数学教学从学生的生活体验和客观存在的事实或现实课题动身,为学生供应较感兴趣的问题情景,帮忙学生顺当地进入学习情景。同时,问题是学问、力量的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进展探究和思索。) 三、例题讲解 例1(教材P49例3测量金字塔高度问题) 相像三角形的应用教学设计 分析:依据太阳光的光线是相互平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子相互
6、平行,从而构造相像三角形,再利用相像三角形的判定和性质,依据已知条件,求出金字塔的高度. 解:略(见教材P49) 问:你还可以用什么方法来测量金字塔的高度?(如用身高等) 解法二:用镜面反射(如图,点A是个小镜子,依据光的反射定律:由入射角等于反射角构造相像三角形).(解法略) 例2(教材P50练习测量河宽问题) 相像三角形的应用教学设计相像三角形的应用教学设计 分析:设河宽AB长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相像三角形,因此有 ,即 相像三角形的应用教学设计 .再解x的方程可求出河宽. 解:略(见教材P50) 问:你还可以用什么方法来测量河的宽度? 解法二:如
7、图构造相像三角形(解法略). 四、稳固练习 1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米? 2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高? 五、回忆小结 一 )相像三角形的应用主要有如下两个方面 1 测高(不能直接使用皮尺或刻度尺量的) 2 测距(不能直接测量的两点间的距离) 二)测高的方法 测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决 三 )测距的方法
8、 测量不能到达两点间的距离,常构造相像三角形求解 (落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳力量,又有助于学生在归纳的过程中把所学的学问条理化、系统化。) 六、拓展提高 怎样利用相像三角形的有关学问测量旗杆的高度? 七、作业 课本习题27.2 10题、11题。 初二数学教育教案精选篇2 一、素养教育目标 (一)学问教学点 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实. (二)力量训练点 逐步培育学生会观看、比拟、分析、概括等规律思维力量. (三)德育渗透点 引导学生探究、发觉,以培育学生独立思索、勇于创新的精神和良好的学习习惯. 二、教学重点
9、、难点 1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实. 2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比拟、分析,得出结论. 三、教学步骤 (一)明确目标 1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米? 2.长5米的梯子以倾斜角CAB为30靠在墙上,则A、B间的距离为多少? 3.若长5米的梯子以倾斜角40架在墙上,则A、B间距离为多少? 4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角CAB为多少度? 前两个问题学生很简单答复.这两个问题的设计主要是引起学生的回忆,并使学生意识
10、到,本章要用到这些学问.但后两个问题的设计却使学生感到怀疑,这对初三年级这些奇怪、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30角的直角三角形和等腰直角三角形的学问是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的学问全部求出来. 通过四个例子引出课题. (二)整体感知 1.请每一位同学拿出自己的三角板,分别测量并计算30、45、60角的对边、邻边与斜边的比值. 学生很快便会答复结果:无论三角尺大小如何,其比值是一个固定的值.程度
11、较好的学生还会想到,以后在这些特别直角三角形中,只要知道其中一边长,就可求出其他未知边的长. 2.请同学画一个含40角的直角三角形,并测量、计算40角的对边、邻边与斜边的比值,学生又快乐地发觉,不管三角形大小如何,所求的比值是固定的.大局部学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗? 这样做,在培育学生动手力量的同时,也使学生对本节课要讨论的学问有了整体感知,唤起学生的求知欲,大胆地探究新知. (三)重点、难点的学习与目标完成过程 1.通过动手试验,学生会猜测到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生
12、这时的思维很活泼.对于这个问题,局部学生可能能解决它.因此教师此时应让学生绽开争论,独立完成. 2.学生经过讨论,或许能解决这个问题.若不能解决,教师可适当引导: 若一组直角三角形有一个锐角相等,可以把其 顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3落在同一条直线上,则斜边AB1,AB2,AB3落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1B2C2B3C3,AB1C1AB2C2AB3C3, 形中,A的对边、邻边与斜边的比值,是一个固定值. 通过引导,使学生自己独立把握了重点,到达学问教学目标,同时培育学生力量,进展了德育渗透. 而前面
13、导课中动手试验的设计,实际上为突破难点而设计.这一设计同时起到培育学生思维力量的作用. 练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来. (四)总结与扩展 1.引导学生作学问总结:本节课在复习勾股定理及含30角直角三角形的性质根底上,通过动手试验、证明,我们发觉,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的. 教师可适当补充:本节课经过同学们自己动手试验,大胆猜想和积极思索,我们发觉了一个新的结论,信任大家的规律思维力量又有所提高,盼望大家发扬这种创新精神,变被动学学问为主动发觉问题,培育自己的创新意识. 2.扩展:当锐角为30时,它的对边与斜边比值我们
14、知道.今日我们又发觉,锐角任意时,它的对边与斜边的比值也是固定的.假如知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重讨论这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣. 四、布置作业 本节课内容较少,而且是为正、余弦概念打根底的,因此课后应要求学生预习正余弦概念. 初二数学教育教案精选篇3 求数的平方根和立方根的运算是数学的根本运算之一,在根式运算、解方程及几何图形解法等问题中常常要用到。学习立方根的意义在于:(1)它有着广泛应用,由于空间形体都是三维的,关于有关体积的计算常常涉及开立
15、方。(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一样,立方根对进一步讨论奇次方根的性质具有典型意义。 教学目标:1、能说出开立方、立方根的定义,记住正数、零、负数的立方根的不同结论;能用符号 表示a的立方根,并指出被开方数、根指数,会正确读出符号 ,知道开立方与立方互为逆运算。2、能依据立方根的定义求完全立方数的立方根。教学重点是:立方根相关概念的理解和求法。在教学中突出立方根与平方根的比照,弄清两者的区分与联系,这样做既有利于稳固平方根的概念,又便于加深对立方根的理解。 在教学过程中,我注意表达教师的导向作用和学生的主体地位。本节是新课内容的学习。教学过程中尽力引导学生成为学问的发
16、觉者,把教师的点拨和学生解决问题结合起来,为学生创设情境。 在课堂的引入上采纳了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题是学生易于承受。再对已学过的相像运算-平方根进展复习,为接下来与立方根进展比拟打下根底。为培育学生自主学习的力量,我为他们布置了问题,让他们带着问题看书。自己找出立方根的根本概念。关于立方根的个数的争论,是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采纳了先启发学生思索的方法,用“想一想”提出有关正数、0、负数立方根个数的思索题,接着安排一个例题,求一些详细数的立方根,在学生经过思索并有了一些感性熟悉之后,自己总结出结论。其后,引导学生自
17、己总结平方根与立方根的区分,强调:用根号式子表示立方根时,根指数不能省略;以及立方根的性。考虑到假如教学规划提前完成,我在练习卷之外,还预备了一些易混淆的命题让学生推断、区分,稳固所学内容。 本节内容设计了两课时完成,在其次课时进一步深入学习立方根在解方程,以及与平方根局部的综合应用。 初二数学教育教案精选篇4 1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a0),分清二次项及其系数、一次项及其系数与常数项等概念. 2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解. 重点 通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0
18、(a0)和一元二次方程的解等概念,并能用这些概念解决简洁问题. 难点 一元二次方程及其二次项系数、一次项系数和常数项的识别. 活动1复习旧知 1.什么是方程?你能举一个方程的例子吗? 2.以下哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1 3.以下哪个实数是方程2x-1=3的解?并给出方程的解的概念. A.0B.1C.2D.3 活动2探究新知 依据题意列方程. 1.教材第2页问题1. 提出问题: (1)正方形的大小由什么量打算?此题应当设哪个量为未知数? (2)此题中有什么数量关系?能利用这个数量关系列方程吗?怎么
19、列方程? (3)这个方程能整理为比拟简洁的形式吗?请说出整理之后的方程. 2.教材第2页问题2. 提出问题: (1)此题中有哪些量?由这些量可以得到什么? (2)竞赛队伍的数量与竞赛的场次有什么关系?假如有5个队参赛,每个队竞赛几场?一共有20场竞赛吗?假如不是20场竞赛,那么毕竟竞赛多少场? (3)假如有x个队参赛,一共竞赛多少场呢? 3.一个数比另一个数大3,且两个数之积为0,求这两个数. 提出问题: 此题需要设两个未知数吗?假如可以设一个未知数,那么方程应当怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3归纳概念 提出问题: (1)上述方程与一元一次方程有什
20、么一样点和不同点? (2)类比一元一次方程,我们可以给这一类方程取一个什么名字? (3)归纳一元二次方程的概念. 1.一元二次方程:只含有_个未知数,并且未知数的次数是_,这样的_方程,叫做一元二次方程. 2.一元二次方程的一般形式是ax2+bx+c=0(a0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 提出问题: (1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么? (2)为什么要限制a0,b,c可以为0吗? (3)2x2-x+1=0的一次项系数是1吗?为什么? 3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方
21、程的解(根). 活动4例题与练习 例1在以下方程中,属于一元二次方程的是_. (1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2; (4)2x2-2x(x+7)=0. 总结:推断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.留意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程. 例2教材第3页例题. 例3以-2为根的一元二次方程是() A.x2+2x-1=0 B.x2-x-2=0 C.x2+x+2=0 D.x2+x-2=0 总结:推断一个数是否为方程的解,可以将这个数代入方程,推断方程左、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 教育 教案
限制150内