《全国中考数学压轴题精选(一).doc》由会员分享,可在线阅读,更多相关《全国中考数学压轴题精选(一).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 学习改变命运,思考成就未来 中考数学压轴题精选1(14分)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点. (1) 求抛物线的解析式. (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。(注:抛物线的对称轴为)2(12分)如图20,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3)平行于对
2、角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒)(1) 点A的坐标是_,点C的坐标是_; (2) 当t= 秒或 秒时,MN=AC;(3) 设OMN的面积为S,求S与t的函数关系式;(4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由图203(14分)如图11,在梯形ABCD中,ADBC,AB=AD=DC=2cm,BC=4cm,在等腰PQR中,QPR=120,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰PQR以1cm/秒的速度沿直线l箭头所
3、示方向匀速运动,t秒时梯形ABCD与等腰PQR重合部分的面积记为S平方厘米(1)当t=4时,求S的值(2)当,求S与t的函数关系式,并求出S的最大值图114如图9,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OBOC ,tanACO(1)求这个二次函数的表达式(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该
4、圆半径的长度(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,APG的面积最大?求出此时P点的坐标和APG的最大面积. 5 如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BAC=AGF=90,它们的斜边长为2,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围. (3)以ABC的斜边BC所
5、在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BDCE=DE.Gyx图12OFEDCBAG图11FEDCBA (4)在旋转过程中,(3)中的等量关系BDCE=DE是否始终成立,若成立,请证明,若不成立,请说明理由. 6(本小题满分12分)已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=4ac (1) 求抛物线的解析式;(2) 在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;(3)
6、 根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?OxyA第28题图B第28题图OxyACBPP1DP2P 7(本题(1)(3)小题满分12分,(4)小题为附加题另外附加2分)如图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒(1) 当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2) 求正方形边长
7、及顶点C的坐标;(3) 在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标附加题:(如果有时间,还可以继续解答下面问题,祝你成功!)如果点P、Q保持原速度速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由8如图,六边形ABCDEF内接于半径为r(常数)的O,其中AD为直径,且AB=CD=DE=FA.(1)当BAD=75时,求的长;(2)求证:BCADFE;(3)设AB=,求六边形ABCDEF的周长L关于的函数关系式,并指出为何值时,L取得最大值.ABCDEFO9 (本题12分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“
8、蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;AOBMDC图12yx(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式. (第28题)ABCDOy/km90012x/h410(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,
9、图中的折线表示与之间的函数关系根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇求第二列快车比第一列快车晚出发多少小时?11(本小题满分14分)如图,现有两块全等的直角三角形纸板,它们两直角边的长分别为1和2将它们分别放置于平面直角坐标系中的,处,直角边在轴上一直尺从上方紧靠两纸板放置,让纸板沿直尺边缘平行移动当纸板移动至处时,设与
10、分别交于点,与轴分别交于点(1)求直线所对应的函数关系式;(2)当点是线段(端点除外)上的动点时,试探究:点到轴的距离与线段的长是否总相等?请说明理由;AOEGBFHNCPIxyM(第24题图)DII两块纸板重叠部分(图中的阴影部分)的面积是否存在最大值?若存在,求出这个最大值及取最大值时点的坐标;若不存在,请说明理由12(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆例如线段的最小覆盖圆就是以线段为直径的圆AABBCC(第25题图1)(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请
11、写出你所得到的结论(不要求证明);GHEF(第25题图2)(3)某地有四个村庄(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由13(14分)已知双曲线与直线相交于A、B两点第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点过点B作BDy轴交x轴于点D过N(0,n)作NCx轴交双曲线于点E,交BD于点C(1)若点D坐标是(8,0),求A、B两点坐标及k的值(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式(第28题)yOADxBCENM(3)设直线
12、AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求pq的值 14(本题满分12分)如图,的半径为,正方形顶点坐标为,顶点在上运动(1)当点运动到与点、在同一条直线上时,试证明直线与相切;(2)当直线与相切时,求所在直线对应的函数关系式;第27题(3)设点的横坐标为,正方形的面积为,求与之间的函数关系式,并求出的最大值与最小值15已知二次函数的图象经过三点(1,0),(-3,0),(0,)。(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分)(2)若反比例函数图像与二次函数的图像在第一象限内交于点A(x0,y0), x0落在两个相邻的正整数之间。请你观
13、察图像,写出这两个相邻的正整数;(4分)(3)若反比例函数的图像与二次函数的图像在第一象限内的交点为A,点A的横坐标为满足23,试求实数k的取值范围。(5分)16(08江苏无锡27题)(本小题满分10分)如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值17(08江苏无锡28题)(本小题满分8分)一种电讯信号转发装置的发射直径为31km现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装
14、置,使这些装置转发的信号能完全覆盖这个城市问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)图4图3图2图118 (本题满分12分) 在ABC中,A90,AB4,AC3,M是AB上的动点(不与A,B重合),过M点作MNBC交AC于点N以MN为直径作O,并在O内作内接矩形AMPN令AMx (1)用含x的代数式表示NP的面积S; (2)当x为
15、何值时,O与直线BC相切? (3)在动点M的运动过程中,记NP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?ABCMNP图 3OABCMND图 2OABCMNP图 1O19(本小题满分11分)已知MAN,AC平分MAN。在图1中,若MAN120,ABCADC90,求证:ABADAC;在图2中,若MAN120,ABCADC180,则中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;在图3中:若MAN60,ABCADC180,则ABAD_AC;第25题图若MAN(0180),ABCADC180,则ABAD_AC(用含的三角函数表示),并给出证明。20(本小题满分13分)如图,已知抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3)。第26题图求抛物线的解析式;设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。8
限制150内