艾瑞咨询-2022年中国AI+金融行业发展研究报告-2022.11.pdf
《艾瑞咨询-2022年中国AI+金融行业发展研究报告-2022.11.pdf》由会员分享,可在线阅读,更多相关《艾瑞咨询-2022年中国AI+金融行业发展研究报告-2022.11.pdf(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中国AI+金融行业发展研究报告2022.11 iResearch Inc.22022.11 iResearch I摘要来源:艾瑞咨询研究院自主研究绘制。市场竞争方面,头部金融科技子公司与AI企业在抢夺头部金融机构时将面临更为激烈的竞争,腰尾部金融科技子公司联手AI企业占领市场;市场挑战方面,数据安全、算法黑箱、产品公平公正等问题仍然存在,需从用户数据授权、算法稳定性攻克、防止大数据杀熟等方面入手,推进AI+金融产业健康有序发展;市场机遇方面,结合自然语言处理技术的金融精准营销应用将收获更多的市场关注,多模态虚拟数字人为员工培训、客户服务等场景提供多元服务可能性。金融机构内部市场竞争加剧、金融机
2、构人力成本上升、金融市场监管趋严等客观环境驱使金融机构不断投入预算采购前沿科技,改善传统作业模式,提升金融业务运营水平。AI+金融作为优化金融业务场景的应用技术工具,主要应用于金融机构IT总体架构的中台层与渠道层,精细化解决具体场景的业务数字化诉求。总体而言,AI+金融在金融机构的内生需求、资本持续投入、政策不断扶持的驱动下,获得较为长足广阔的发展空间。本报告主要讨论金融科技子公司、AI企业、智能硬件企业、互联网大厂四类AI+金融业内玩家。金融科技子公司背靠母公司业务与数据资源,通常通过资源集成者、任务分包者的角色参与产业链中上游;AI企业通常生产自技术层到应用层的一体化金融解决方案,以垂直细
3、分场景的算法优势见长;智能硬件企业基于已有的端侧硬件产品,逐步研发配套AI+金融软件;互联网大厂凭借品牌效应与互联网产业业务经验,开拓金融领域的业务与生态合作。本报告将AI+金融的落地产品分为计算机视觉、机器学习、知识图谱、智能语音与对话式AI、自然语言处理五种类型,将AI+金融的落地场景分为安防与身份识别、信贷风控与合规控制、精准营销、客服与运营业务优化、保险理赔与投顾投研五种类型,探讨每一技术类型产品所适用业务场景、业务价值、市场空间,对比各类技术产品在金融领域的应用情况,给出金融机构对AI+金融产品重要评价维度,为读者提供产品价值参考。行业概述细分技术领域商业分析未来展望3行业概述篇1A
4、I赋能篇2商业分析篇3案例实践篇4未来思考篇542022.11 iResearch IAI+金融愿景改变传统作业服务模式,提升业务运营水平来源:艾瑞咨询研究院自主研究绘制。算力:AI算力基础数据:数据资源管理信用风险警示人脸核身团伙欺诈防范风控决策支持内部合规风控智能支付智能保险理赔业务人员培训落水识别安防监控理财精准推荐股价分析团伙作案分析需求监测识别chatbot产品定价智能财税算法:模型工具准备协同并行的AI+金融应用应用层:面向金融各类业务场景,改善金融业务痛点,提升金融业务运行水平基础层技术层算法研发:AI模型生产AI芯片智能服务器高性能计算平台超算中心智能云AI基础数据服务大数据治
5、理与数据智能化AI开发平台AI开放平台计算机视觉机器学习知识图谱智能语音自然语言处理理想的AI金融产业链状态:AI+金融应用服务海量金融业务场景智能核保52022.11 iResearch IAI+金融场景中蕴藏的产业机会金融机构数字化需求与AI+金融产品功能在场景中得以匹配近年来,在市场竞争加剧、人力成本上升、市场监管趋严等因素的影响下,以中小银行为代表的金融机构数字化转型需求与意愿不断提升,在客服与运营业务优化、精准营销、安防与身份识别、信贷风控与合规控制、保险理赔与智能投顾等业务场景中释放出大量对智能化转型产品的需求。与此同时,AI+金融供给侧计算机视觉、智能语音与对话式AI、机器学习、
6、知识图谱、自然语言处理等产品及功能逐渐完善,可在金融业务场景中实现与金融机构数字化转型需求的匹配。来源:艾瑞咨询研究院自主研究绘制。金融机构数字化转型需求业务场景匹配AI+金融产品及主要功能市场竞争加剧储蓄分流、利率市场化、金融脱媒等因素的影响下,对银行特别是中小型商业银行生存压力增大。需求点1:以数字化手段强化营销拓客能力。需求点2:需提升客户服务质量以满足客户需求。人力成本上升我国人口红利逐渐消失,劳动力成本逐渐上升,传统客服、安防等需要大量人员投入的场景人力成本提高。需求点1:减少在简单重复性劳动中所投入人力。需求点2:优化人员绩效考核与提升方式。市场监管趋严流动性风险管理等监管新规陆续
7、颁发,金融机构合规、风控等场景的监管成本增高。需求点1:提升信贷、理赔等业务自身风险识别能力。需求点2:提升对于相关业务的监管效率与精准度。计算机视觉基于视觉感知与内容分析技术处理前端硬件采集图像和视频数据,将分析结果用于预警或辅助决策等。机器学习以机器学习开发平台为核心载体,分析历史数据特征,预测风险点与营销点,辅助决策。知识图谱以知识提取与计算为核心环节,基于金融大数据构建关联网络,实现风险异常识别与监测等功能。智能语音与对话式AI以实现人机语音交互为核心目标,利用ASR、TTS、NLP技术,构建高度场景化、强交互性的产品。自然语言处理以NLU、NLG技术为核心,使计算机能够理解、处理并输
8、出自然语言,实现交互与分析功能。客服与运营业务优化精准营销信贷风控与合规控制安防与身份识别保险理赔与投顾投研金融机构数字化转型需求与AI+金融产品可实现功能在实际业务场景中匹配情况62022.11 iResearch IAI+金融定义与分类来源:艾瑞咨询研究院自主研究绘制。聚焦AI技术在金融机构前中后台核心业务环节中的实际应用人工智能技术是一门用数据和模型去为当前问题提供解决方案的交叉学科,主要目标是让机器可以胜任通常需要人类智能才能完成的基础重复性工作甚至是复杂工作。本报告中,AI泛指开发用于模拟、延伸和扩展人的智能所涉及的人工智能细分技术,包括但不限于机器学习、计算机视觉、自然语言处理、知
9、识图谱等。金融概念则指银行、保险公司、证券公司等主要金融主体机构。AI应用场景涵盖前中后台中的市场营销、产品设计、风险管控、客户服务、运营支持等。综合来看,AI+金融并非单纯的技术累加,而是针对不同业务场景需求,运用前沿技术成果推出的创新金融产品、经营模式、业务流程,以及推动金融业务高质量发展的一系列配套解决方案。AI+金融界定及研究范畴人工智能金融主体前台中台后台智慧营销智能客服信用评估生物识别可视柜台智慧网点移动支付智能投顾数据中台业务中台客户画像信贷审批模型训练数据引擎智慧运营分控集市智慧风控反欺诈RPAOCR账户管理决策引擎模型开发大数据可视化机器学习深度学习NLP知识图谱智能语音计算
10、机视觉银行保险证券基金信托72022.11 iResearch I金融机构AI产品在IT总体架构中的层级主要应用于渠道层和中台层,精细化解决业务数字化诉求AI技术的逐步落地应用帮助金融机构从后台的臃肿繁琐中解脱,降低沟通成本、提升协作效率,同时实现前台业务的快速决策、敏捷行动,进而在市场竞争中获得更强的竞争力。人工智能技术目前主要渗透于金融机构IT体系中的渠道层和中台层,技术嵌入愈加细化,应用模块也趋于广泛。渠道层属于应用层,与终端用户直接产生交互,服务于具体业务;中台层属于技术层,服务于应用开发者与业务管理者,进行场景应用模型的开发、调优、测试。来源:艾瑞咨询研究院自主研究绘制。数据中台业务
11、中台智慧中台统一数据服务应用集成平台模型管理模型训练营销模型风控引擎决策类模型感知类模型账户管理支付中心营销支持交易中心数据研发数据引擎风控集市业务集市CRMECIF财务系统人力资源系统总账系统ALM外联系统安全公/私有云物理机金融级中间件虚拟机分布式数据库统一日志中心应用性能追踪渠道层中台层后台层基础层业务监控预警系统网点AI在金融机构IT总体架构中的覆盖层级网上银行外部设备第三方应用APP呼叫中心82022.11 iResearch I2022.11 iResearch I金融机构IT建设投入情况金融机构技术投入增势显著,推动AI+金融市场持续发展自2019年人民银行发布金融科技发展规划以
12、来,我国金融业数字化转型升级深入推进,金融机构技术资金投入持续增长。2022年,以银行、保险、证券为主的金融机构技术资金投入预计将超过4000亿元。巨额投入夯实金融机构的IT基础,做好AI金融应用的底层设施建设。与此同时,政策扶持增强,金融科技核心技术不断迭代且与金融业务场景进一步融合,金融机构间科技竞争愈发激烈,前沿技术采购不断增长。以国内银行与保险机构为前沿科技采购代表,2022年中国银行与保险机构前沿科技采购支出将达到170亿元。金融机构在科技领域投入的持续增长将为AI金融企业的长远发展带来源头活水,推动AI+金融市场持续发展,促进金融业数字化转型升级提质增效。2020-2024年中国银
13、行与保险机构前沿科技采购情况2078 2558 3082 3668 4328 351 432 532 648 798 263 321 396 495 629 20202021e2022e2023e2024e银行(亿元)保险(亿元)证券(亿元)2020-2024年中国金融机构技术资金投入情况36 42 47 60 69 77 98 122 149 186 20202021e2022e2023e2024e金融云计算基础设施(亿元)金融AI与大数据(亿元)11314017020925526923310401048125755来源:艾瑞咨询研究院根据专家访谈数据自主建模测算。注释:金融AI与大数据包括
14、:AI技术、大数据技术、区块链技术、RPA、隐私计算等技术类别。前沿科技采购费用以银行机构从科技厂商进行技术采购的统计口径为主,不包括解决方案厂商集成或总包的科技采购部分。来源:艾瑞咨询研究院根据专家访谈数据自主建模测算。注释:金融机构技术资金投入的统计范畴包括:银行、保险、证券机构对信息化基础设施、软硬件技术工具、产品技术服务、支持性配套设备的投入,以及移动互联网及相关数字平台运营成本等。92022.11 iResearch IAI+金融资本热度机器学习产品热度上升,客服与运营业务优化场景布局增加据不完全统计,2020年至2022年9月,AI+金融领域总计发生融资事件104起,轮次分布较为平
15、均。截止2022年9月,AI+金融领域融资事件已达29起,基本持平2021年全年。从技术分类看,机器学习产品与自然语言处理产品更受资本青睐,资本热度较高,而知识图谱和智能语音产品与2020年、2021年相比,资本热度有所下降。从应用场景分布看,融资企业更多布局客服与运营业务优化场景;同时,信贷风控与合规控制、精准营销两大场景的合计占比较高,是融资企业广泛布局的热点场景。来源:IT桔子,艾瑞咨询研究院自主整理绘制。2020-2022年9月获投AI金融企业应用场景分布2020-2022年9月获投AI金融企业产品布局种子及天使轮4%A轮相关24%B轮相关25%C轮-F轮26%F轮以后21%17.8%
16、13.3%31.0%44.4%33.3%27.6%46.7%36.7%37.9%40.0%70.0%65.5%8.9%202020212022.9安防与身份识别信贷风控与合规控制精准营销客服与运营业务优化保险理赔与投研投顾注释:由于部分AI金融企业布局多款产品和多个应用场景,本报告采取重复计数统计,故每年产品布局比例总和与场景分布比例总和超过100%。2020-2022年9月AI+金融融资事件数量26.7%16.7%24.1%46.7%63.3%69.0%31.1%20.0%10.3%37.8%26.7%13.8%46.7%53.3%34.5%202020212022.9计算机视觉机器学习知识
17、图谱智能语音自然语言处理45起30起29起202020212022.9总事件104起2020-2022年9月AI+金融融资轮次分布102022.11 iResearch IAI+金融领域相关政策解读来源:艾瑞咨询研究院根据公开资料整理绘制。2019年8月,人民银行发布了金融科技(FinTech)发展规划(2019-2021年),明确了金融科技发展的重要意义和方向,推动建立健全金融科技的“四梁八柱”。经过3年的探索与实践,上述目标已基本实现,金融科技正在成为驱动金融业变革的重要引擎。2021年末,人民银行发布了金融科技发展规划(2022-2025 年),重在解决金融科技发展不平衡不充分的问题。在
18、数字经济的浪潮下,新政策以“金融科技的整体水平与核心竞争力实现跨越式提升“为核心目标,在金融科技治理体系、数据要素价值挖掘、关键核心技术深化、数字基础设施建设等方面提出了更加具体的要求和举措,推动我国金融科技发展迈入”积厚成势”新阶段。政策推动金融科技从“立柱架梁”迈入“积厚成势”新阶段其他政策方面:近两年人民银行、银保监会、科技部等监管主体集中颁布一系列配套政策。从金融科技标准制定、数据安全与隐私保护、数据治理与应用、科技与金融场景深度融合等方向进一步促进我国金融科技的发展,完善金融科技监管框架体系。总体来说,“规范治理+科技与金融深度融合”是现阶段主要政策导向。2019-2021规划强调整
19、体布局:加强金融科技战略部署:统筹规划、体制机制建设等战略部署强化金融科技合理应用:重点突破,提升金融科技应用水平赋能金融服务提质增效:运用金融科技手段提升金融服务质效金融科技发展的重点任务部署由宏观走向具体2022-2025规划强调具体措施:健全金融科技治理体系:完善治理结构、加强金融科技伦理建设等充分释放数据要素潜能:数据能力建设、数据安全保护等打造新型数字基础设施:建设绿色数据中心、布局先进算力体系等2021年9月 人民银行发布征信业务管理办法2022年1月,银保监会发布关于银行业保险业数字化转型的指导意见2022年2月,人民银行联合市场监管总局发布金融科技产品认证目录(第二批)和新的金
20、融科技产品认证规则2022年7月,科技部等联合发布关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见近期AI+金融相关政策解读112022.11 iResearch IAI+金融领域相关政策汇总来源:艾瑞咨询研究院根据公开资料整理绘制。发布日期发布机构政策文件AI+金融相关内容2022-07科技部、教育部工业和信息化部等关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见鼓励在制造、金融等重点行业深入挖掘人工智能技术应用场景,促进智能经济高端高效发展。金融领域优先探索大数据金融风控、企业智能征信、智能反欺诈等场景。2022-02市场监管总局人民银行金融科技产品认证目录
21、(第二批)金融科技产品认证规则新增区块链技术产品、商业银行应用程序接口、多方安全计算金融应用等金融科技产品目录以及新的认证规则。2022-02人民银行、银保监会、证监会等金融标准化“十四五”发展规划明确“十四五”时期统筹推进金融标准化发展的指导思想、基本原则、主要目标、重点任务和保障措施。2022-01银保监会关于银行业保险业数字化转型的指导意见明确了银行业保险业数字化转型的指导思想、基本原则和工作目标,为银行保险机构数字化转型指明了方向。2021-12人民银行金融科技发展规划(2022-2025年)提出新时期金融科技发展的指导意见,明确金融数字化转型的总体思路、发展目标、重点任务和实施保障。
22、其中重点任务包括:健全金融科技治理体系、充分释放数据要素潜能等八个方面。2021-09人民银行征信业务管理办法数据助贷业务、大数据分析与处理等实质从事信用评价等业务的活动均纳入了监管范畴,对金融科技、大数据风控行业影响较大。2021-04科技部中国农业银行关于加强现代农业科技金融服务创新支撑乡村振兴战略实施的意见科技部和中国农业银行将加强资源整合力度,共同加大对新型研发机构、科技企业融资支持力度。探索建立投贷联动的科技金融服务模式,提供“融资+融智”全方位服务。2020-07银保监会商业银行互联网贷款管理暂行办法从风险管理体系、风险数据和风险模型管理、信息科技风险管理、贷款合作管理、监督管理等
23、方面对商业银行互联网贷款管理提出明确要求。2020-01科技部邮储银行加强科技金融合作有关工作的通知完善科技创新投入和科技金融政策,进一步推动科技和金融深度结合,加强相关领域科技金融合作。2019-10市场监管总局人民银行金融科技产品认证目录(第一批)金融科技产品认证规则包含客户端软件、安全芯片、安全载体等11种金融科技产品目录与认证规则。2019-08人民银行金融科技(FinTech)发展规划(20192021年)明确了我国金融科技发展的重要意义和基础,提出了金融科技发展的总体要求、指导思想和基本原则,同时提出了六大重点发展任务。2019-2022年AI+金融相关政策汇总12行业概述篇1AI
24、赋能篇2商业分析篇3案例实践篇4未来思考篇5132022.11 iResearch I2022.11 iResearch I169 223 296 375 453 516 589 666 382 501 677 885 1083 1211 1375 1562 201920202021e 2022e 2023e 2024e 2025e 2026e核心产品市场规模(亿元)带动相关产业规模(亿元)AI+金融市场规模金融机器学习产品为市场主要拉力由于金融机构往往具有信息安全要求高、数据处理量大且信息基础设施建设较为完善的特征,人工智能技术得以较早在金融领域营销、合规、风控等多元化场景实现落地应用并得到
25、长足发展。据艾瑞统计测算,2021年AI+金融核心市场规模达到296亿元,带动相关产业规模677亿元,到2026年,核心市场规模达到666亿元,CAGR=17.6%,带动相关产业规模1562亿元,CAGR=18.2%。分技术产品来看,金融机器学习产品由于与金融机构多业务场景均可密切结合且产品能力在海量高质金融业务数据助力下得到快速提升成为市场主要拉力之一,2021年金融机器学习产品占AI+金融核心产品市场规模比重达42.2%。注释:核心规模包括计算机视觉、智能语音及对话式AI、机器学习、知识图谱、自然语言处理等核心产业;带动规模为为达到AI应用目的而连带采购的、具有相关性的软硬件产品、服务。来
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 咨询 2022 年中 AI 金融 行业 发展 研究 报告 2022.11
限制150内