北师大版数学九年级下册教案4篇.docx
《北师大版数学九年级下册教案4篇.docx》由会员分享,可在线阅读,更多相关《北师大版数学九年级下册教案4篇.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 北师大版数学九年级下册教案4篇 锐角三角函数 教学目标 1、 经受探究直角三角形中边角关系的过程 2、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明 3、 能够运用三角函数表示直角三角形中两边的比 4、 能够依据直角三角形中的边角关系,进展简洁的计算 教学重点和难点 重点:理解正切函数的定义 难点:理解正切函数的定义 教学过程设计 从学生原有的认知构造提出问题 直角三角形是特别的三角形,无论是边,还是角,它都有其它三角形所没有的性质。这一章,我们连续学习直角三角形的边角关系。 师生共同讨论形成概念 1、梯子的倾斜程度 在许多建筑物里,为了到达美观等目的,往往都有局部设计成倾斜的
2、。这就涉及到倾斜角的问题。用倾斜角刻画倾斜程度是特别自然的。但在许多实现问题中,人们无法测得倾斜角,这时通常采纳一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的倾斜角的正切。 1)(重点讲解)假如梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡; 2)假如墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡; 3)假如底边的长度一样,那么墙的高与梯子的高的比值越大,则梯子越陡; 通过对以上问题的争论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定根底。 2、想一想(比值不变) 想一想 书本P 2 想一想 通过对前面的问题的争论,学生已经知道可以
3、用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。当倾斜角确定时,其对边与邻边的比值随之确定。这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。 北师大版数学九年级下册教案2 一、教学目标 1. 通过观看、猜测、比拟、详细操作等数学活动,学会用计算器求一个锐角的三角函数值。 2.经受利用三角函数学问解决实际 问题的过程,促进观看、分析、归纳、沟通等力量的进展。 3.感受数学与生活的亲密联系,丰富数学学习的胜利体验,激发学生连续学习 的奇怪 心,培育学生与他人合作沟通的意识。 二、教材分析 在生活中,我们会常常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,
4、往往要应用到三角函数学问。在上节课中已经学习了30, 45,60角的三角函数值,可以进展一些特定状况下的计算,但是生活中的问题,仅仅依靠这三个特别角度的三角函数值来解决是不行能的。本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发觉并提 出问题、分析问题、探究解决方法直至最终解决问题的过程。 三、学校及学生状况分析 九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象规律思维为主要进展趋势,但在很大程度上,学生仍旧要依靠详细的阅历材料和操作活动来理解抽象的规律关系。另外,计算器的使用可以极大减轻学生的负担。因此,依据教材中供应的背景材料,辅以计算器的使用,可以使学生更
5、好地解决问题。 学生自小学起就开头使用计算器,对计算器的操作比拟熟识。同时,在前面的课程中学生已经学习了锐角三角函数的定义,30,45,60角的三角函数值以及与它们相关的简洁计算,具备了学习本节课的学问和技能。 四、教学设计 (一)复习提问 1.梯子靠在墙 上,假如梯子与地面的夹角为60,梯子的长度为3米,那么梯子底端到墙的距离有几米? 学生活动:依据题意,求出数值。 2.在生活中,梯子与地面的夹角总是60吗? 不是,可以消失各种角度,60只是一种特别现象。 图1(二)创设情境引入课题 1如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200 m。已知缆车的路线与平面的夹角为A=16 ,那
6、么缆车垂直上升的距离是多少? 哪条线段代表缆车上升的垂直距离? 线段BC。 利用哪个直角三角形可以求出BC? 在RtABC中,BC=ABsin 16,所以BC=200sin 16。 你知道sin 16是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。 那么,怎样用科学计算器求三角函数呢? 用科学计算器求三角函数值,要用sin cos和tan键。教师活动:(1)展现下表;(2)按表口述,让学生学会求sin16的值。按键挨次显示结果sin 16sin16=sin 16=0275 637 355 学生活动:按表中所列挨次求出sin 16的值。 你能求出cos 42,tan 85和sin 72
7、3825的值吗? 学生活动:类比求sin 16的方法,通过猜测、争论、相互学习,利用计算器求相应的三角函数值(操作程序如下表): 按键挨次显示结果cos 42cos42 =cos 42=0743 144 825tan 85tan85=tan 85=11430 052 3sin 723825sin72DMS 38DMS2 5DMS=sin 723825 0954 450 321 师:利用科学计算器解决本节一开头的问题。 生:BC=200sin 165212(m)。 说明:利用学生的学习兴趣,稳固用计算器求三角函数值的操作方法。 (三)想一想 师:在本节一开头的问题中,当缆车连续由点B到达点D时,
8、它又走过了 200 m,缆车由点B到达点D的行驶路线与 水平面的夹角为=42,由此你还能计算什么? 学生活动:(1)可以求出其次次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。(2)相互补充并在这个过程中加深对三角函数的熟悉。 (四)随堂练习 1.一个人由山底爬到山顶,需先爬40的山坡300 m,再爬30的山坡100 m,求山高(结果准确到0.1 m)。 2.如图2,DAB=56,CAB=50,AB=20 m,求图中避雷针CD的长度(结果准确到0.01 m)。 图2图3 (五)检测 如图3,物华大厦离小伟家60 m,小伟从自家的窗中远眺大厦,并测得大厦顶部的仰角是45,
9、而大厦底部的俯角是37,求大厦的高度(结果准确到01 m)。 说明:在学生练习的同时,教师要巡察指导,观看学生的学习状况,并针对学生的困难赐予准时的指导。 (六)小结 学生谈学习本节的感受,如本节课学习了哪些新学问,学习过程中遇到哪些困难,如何解决困难,等等。 (七)作业 1.用计算器求以下各式的值: (1)tan 32;(2)cos 2453;(3)sin 6211;(4)tan 393939。 图42如图4,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P,Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q的南偏西50的方向,求河宽(结果准确到1 m)。 五、教学反思 1.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 数学 九年级 下册 教案
限制150内