高中化高三大题练习解题7解析几何专题7第34练.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中化高三大题练习解题7解析几何专题7第34练.doc》由会员分享,可在线阅读,更多相关《高中化高三大题练习解题7解析几何专题7第34练.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习资料高中化学第34练圆锥曲线中的探索性问题题型分析高考展望本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值范围问题或探索性问题,试题难度较大.常考题型精析题型一定值、定点问题例1已知椭圆C:1 (ab0)经过点(0,),离心率为,直线l经过椭圆C的右焦点F交椭圆于A、B两点.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且,当直线l的倾斜角变化时,探求的值是否为定值?若是,求出的值;否则,请说明理由.点评(1)定点问题的求解策略把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然直线或曲线过定点,那么这个方程就要
2、对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)定值问题的求解策略在解析几何中,有些几何量与参数无关,这就是“定值”问题,解决这类问题常通过取特殊值,先确定“定值”是多少,再进行证明,或者将问题转化为代数式,再证明该式是与变量无关的常数或者由该等式与变量无关,令其系数等于零即可得到定值.变式训练1(2015课标全国)已知椭圆C:1(ab0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的
3、乘积为定值.题型二定直线问题例2在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x22py(p0)相交于A,B两点.(1)若点N是点C关于坐标原点O的对称点,求ANB面积的最小值;(2)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,请说明理由.点评(1)确定定直线,由斜率、截距、定点等因素确定.(2)定直线一般为特殊直线xx0,yy0等.变式训练2已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等
4、于4?若存在,求出直线l的方程;若不存在,说明理由.题型三存在性问题例3(1)已知直线ya交抛物线yx2于A,B两点.若该抛物线上存在点C,使得ACB为直角,则a的取值范围为_.(2)如图,已知椭圆C:1 (ab0)的离心率为,以椭圆的左顶点T为圆心作圆T:(x2)2y2r2 (r0),设圆T与椭圆C交于点M,N.求椭圆C的方程;求的最小值,并求此时圆T的方程;设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点.试问:是否存在使SPOSSPOR最大的点P?若存在,求出点P的坐标;若不存在,请说明理由.点评存在性问题求解的思路及策略(1)思路:先假设存在,
5、推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(2)策略:当条件和结论不唯一时要分类讨论;当给出结论而要推导出存在的条件时,先假设成立,再推出条件.变式训练3(2015广东)已知过原点的动直线l与圆C1:x2y26x50相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:yk(x4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.高考题型精练1.(2015四川)如图,椭圆E:1(ab0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l平行于x轴时,直线l被椭圆E截
6、得的线段长为2.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.2.已知椭圆C:1(ab0)的离心率e,ab3.(1)求椭圆C的方程;(2)如图,A、B、D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2mk为定值.3.(2014重庆)如图,设椭圆1(ab0)的左、右焦点分别为F1、F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程;(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭
7、圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.4.如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(mn),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记 ,BDM和ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1S2,求的值;(2)当变化时,是否存在与坐标轴不重合的直线l,使得S1S2?并说明理由.答案精析第34练圆锥曲线中的探索性问题常考题型精析例1解(1)依题意得b,e,a2b2c2,a2,c1,椭圆C的方程为1.(2)
8、直线l与y轴相交于点M,故斜率存在,又F坐标为(1,0),设直线l方程为yk(x1),求得l与y轴交于M(0,k),设l交椭圆A(x1,y1),B(x2,y2),由消去y得(34k2)x28k2x4k2120,x1x2,x1x2,又由,(x1,y1k)(1x1,y1),同理,.当直线l的倾斜角变化时,直线的值为定值.变式训练1(1)解由题意得,1,解得a28,b24.所以C的方程为1.(2)证明设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM).将ykxb代入1得(2k21)x24kbx2b280.故xM,yMkxMb.于是直线OM的斜率kOM,即kOMk.
9、所以直线OM的斜率与直线l的斜率的乘积为定值.例2解方法一(1)依题意,点N的坐标为N(0,p),可设A(x1,y1),B(x2,y2),直线AB的方程为ykxp,与x22py联立得消去y得x22pkx2p20.由根与系数的关系得x1x22pk,x1x22p2.于是SABNSBCNSACN2p|x1x2|p|x1x2|pp2p2,当k0时,(SABN)min2p2.(2)假设满足条件的直线l存在,其方程为ya,AC的中点为O,l与以AC为直径的圆相交于点P,Q,PQ的中点为H,则OHPQ,O点的坐标为(,).|OP|AC|,|OH|2ay1p|,|PH|2|OP|2|OH|2(yp2)(2ay
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 化高三大题 练习 解题 解析几何 专题 34
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内