2021年人教版八年级数学上册教学生(全册).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021年人教版八年级数学上册教学生(全册).pdf》由会员分享,可在线阅读,更多相关《2021年人教版八年级数学上册教学生(全册).pdf(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、11.1与三角形有关的线段教学目标:1 .理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2 .能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3 .三角形在实际生活中的应用.(难点)教学过程:一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.教师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念硒 1 图中的锐角三角形有()A.2 个B.3 个C.4 个D.5 个解析:(1)以/为 顶 点 的 锐 角 三 角 形 有 共 2个;(2)以为顶点的锐角三角形有
2、曲。共 1 个.所以图中锐角三角形的个数有2 +1 =3(个).故 选 B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有个点,那么 就 有 乙 誓D-条线段,也可以与线段外的一点组成f112-个三角形.乙乙探究点二:三角形的三边关系 类型一 判定三条线段能否组成三角形加以下列各组线段为边,能组成三角形的是()A.2 c m,3 c m,5 c mB.5 c m,6 c m,1 0 c mC.1 c m,1 c m,3 c mD.3 c m,4 c m,9 c m解析:选项A中2+3 =5,不能组成三角形,故此选项错误;选项B中5+6 1 0,能组成三角形,故此选项正确;
3、选项C中1 +1 V 3,不能组成三角形,故此选项错误;选项D中3+49,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.类型二 判断三角形边的取值范围加一个三角形的三边长分别为4,7,x,那 么x的取值范围是()A.3 1 1 B.4 x 7C.-3%3解析:1三角形的三边长分别为4,7,x,.7 4 V x7+4,即3 x V l L故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.类型三 等腰三角形的三边关系 已知一个等腰三角形的两
4、边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,:4+4 9,故4,9,9能构成三角形,它的周长是4+9+9 =2 2.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.类型四 三角形三边关系与绝对值的综合(例 若a,b,c是。的三边长,化 简b c +b ca+|c+a b .解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行
5、计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b c 0,b c a Q.a b-c+)b c-a +c+a-6 =6+c a+c+a-b+c+a-Z 7=3 c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边由不在同一直线上的三条线段首尾顺次相接所组成的图形.两边之和大于第三边,两边之差小于第三边.11.1.2 三角形的高、中线与角平分线教学目标:i .掌握三角形的高、中线和角平分线的定义,并能够对其进
6、行简单的应用.(重点)2 .能够准确的画出三角形的高、中线和角平分线.(难点)教学过程:一、情境导入这里有一块三角形的蛋糕,如果兄弟两个想要平分的话,你该怎么办呢?本节我们一起来解决这个问题.一 类型一 三角形高的画法颐1画 4%的 边 上 的 高,下列画法中,正确的是()A CC解析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过 点。作边4?的垂线段,即画4?边上的高必,所以画法正确的是D.故 选D.方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.类型二 根据三角形的面积求高B D Cm如图所示,在/
7、比中,AB=AC=5,BC=6,A D L B C于点D,且4 7=4,若点在边Z C上移动,则郎的最小值为解析:根据垂线段最短,可知当出让力。时,彼 有 最 小 值.由 的 面 积 公 式 可 知 比乙1 2 4=-BP-A C,解得价=工.zo方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常 称 为“面积法探究点二:三角形的中线 类型_ 应用三角形的中线求线段的长m 在4 6 6 中,4 7=5 c m,4 9是的中线,若 的周长比的周长大2 c m,贝|BA=解析:如图,:4 9是力aI的中线,.加=修,生队的周长一四C的周长=(%+如+AD)-(AC+
8、A/)+CD)=B A A C,二的一5 =2,二为=7 c m.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将/如 与 4%的周长之差转化为边长的差.类型二 利用中线解决三角形的面积问题m 如图,在力比中,是 加 上 的 一 点,纪=2%点 是”的中点,设/E C,XADF和 的 面 积 分 别 为S 2A B C,五 力 ”和啊,且见彼=1 2,则5 k d 尸 一S&B EF=解析:点是力。的中点,/=%C V5 k =1 2,A 5 k =,;=1 x i2 =6.EC=2BEyS/A B C=1 2,1 2 =4.S ABO S AB=(乂阴+SAAB)(8腑+S&B
9、Q=5 k w S BEFI即 S&A D F S&B EF=S&A B D -S&ABE=6 4 =2.故答案为 2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线就3如图,已知:4 9是4 9 C的角平分线,6 F是4 5 C的高,Z B A C=6 0,/B CE=40 ,求/庞 的 度数.解析:根据/是力比的角平分线,乙以6 0 ,得 出/物/7=3 0 ,再利用CE是丛A B C的高,/B CE=40,得出N8的度数,进而得出N Z如 的 度数.解:是加1的角平分线,/物。=6 0,:/D
10、A C=/B A D=3G.:CE是A A B C的高,N 6 6 F=4 0 ,:.Z 5=5 0 ,:.Z A D B=1 8 Q N 3/胡=1 8 0 -5 0 -3 0 =1 0 0 .方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.三、板书设计三角形的高、中线与角平分线1 .三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2 .三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3 .三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形
11、的角平分线.11.1.3 三角形的稳定性1教学目标:1.通过观察、感悟三角形具有稳定性,四边形不具有稳定性.(重点)2.三角形的稳定性在生活、生产中的实际应用.(难点)教学过程:一、情境导入一天数学小博士听到三角形和四边形在一起争论“有稳定性好还是没有稳定性好?”先听它们是怎么说的.三角形:“具有稳定性的我最好,因为我牢固,不易变形,所以我最受欢迎,不像你四边形,你没有坚定的立场!”四边形:灵活性强,可伸可缩,我的这些优点比起你三角形那呆板、简单、一成不变的形式不知有多优越!”三角形:“我广泛应用于人类的生产生活中,如三角尺、钢架桥、起重机、屋顶的钢架,我的用途大!”四边形:“我的用途广,像活
12、动衣架、缩放尺、活动铁门等,人类的生活因为我而丰富多彩!”假如你是数学小博士,你会如何来调解它们的争论?二、合作探究探究点:三角形的稳定性 类型一 三角形稳定性的应用颐1要使四边形木架(用 4 根木条钉成)不变形,至少需要加钉1 根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,,那么要使一个边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过边形的一个顶点可以作5 3)条对角线,把多边形分成(一2)个三角
13、形,所以,要使一个A 边形木架不变形,至少需要(一3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.类型二 四边形的不稳定性大家经常看到有些学校、小区的大门都使用了伸缩门,它常常做成四边形的形状,你知道这是为什么吗?解析:从四边形特性的角度考虑.解:伸缩门做成四边形的形状,是利用四边形易变形这一特性.方法总结:四边形具有不稳定性,容易变形,我们生活中的很多实例都利用了这一性质,注意在日常生活中积累这方面的经验.三、板书设计1.三角形具有稳定性2.四边形没有稳定性3.三角形的稳定性的应用4.四边形的不稳定性的应用三角形的稳定性11.2.1
14、三角形的内角教学目标:i .理解三角形内角和定理及其证明方法.(难点)2.能用三角形的内角和定理解决一些简单问题.(重点)教学过程:一、情境导入多媒体展示:(三兄弟之争)在一个直角三角形村庄里,住着三个内角,平时它们非常团结,有一天,老三不高兴了,对老大说:凭什么你的度数最大,我也要和你一样大!”老大说:“这是不可能的,否则我们这个家就要被拆散,围不起来了!为什么呢?“老二、老三纳闷起来同学们,你们知道其中的道理吗?二、合作探究探究点一:三角形的内角和 类型一 求三角形内角的度数颓I已知,如图,。是力比1中/边 延 长 线 上 一 点,D F L A B交A B于F,交4C于 其 若 N4=4
15、6,=50。.求 的 度 数.解析:在Rt力乃中,根据三角形内角和定理,求得N 8的度数,再在中求的度数即可.解:在 板 中,:D F V A B,:.A D F B=.VZZ?=50,/板+N+N6=180,.N6=40.在中,:/4=46,Z5=40,/.Z/JC=180 N4N8=94.方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.类型二 判断三角形的形状阿a 一个三角形的三个内角的度数之比为1 :2:3,这个三角形一定是()A.直角三角形B.锐角三角形C.钝角三角形D.无法判定解析:设这个三角形的三个内角
16、的度数分别是x,2x,3 x,根据三角形的内角和为180,得 x+2x+3x=180,解得x=30,.这个三角形的三个内角的度数分别是30,60,90,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.类型三 三角形的内角与角平分线、高的综合运用M 在中,切是?!%的高,支是乙4%的角平分线,求/乙 O必方的度数.解析:根据已知条件用N 4 表示出N 6 和N4”,利用三角形的内角和求出N 4 再求出/ACB,ZACD,最后根据角平分线的定义求出/力位即可求得/龙的度数.解:力=;/6=:/力,设,N6=2x,N O=3 x./4+/6+/%=
17、1 8 0 ,乙 O,x+2x+3x=180,解得 x=30,力=30,Nd%=90.切是/%的高,/.ZADC=90,:.ZACD=180 90-30=60.*是 的 角 平 分 线,.乙亿F=:X90乙=45,?.ADCE=AACD-ZACE=6Q0-45=15.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质 类型一 直角三角形性质的运用AHC画U如图,C E L A F,垂足为,B 与 郎 相交于点。,Z F=40,ZC=30,东4ED F、N版 的 度数.解析:根据直角三角形两锐角互余
18、列式计算即可求出/反 况 再根据三角形的内角和定理束出NC+4 D B C=/F+4 D E F,然后求解即可.解:,:CEL A F,:./D EF=9 G,:.A ED F=Z F=9 0-40=50.由三角形的内角和定理得NC+N?C+N切?=/尸+/加 尸+/呼 二30+/D B C=4G+90,:.Z D B C=100.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计三角形的内角1.三角形的内角和定理:三角形的内角和等于1802.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余三角形的外角第1 课时
19、教学目标:1.掌握三角形外角的定义和三角形内角和定理的两个推论.(重点)2.能运用三角形内角和定理的两个推论进行相关的几何计算和证明,并体会几何图形中的不等关系.(难点)教学过程一、情境导入足球比赛中的数学知识在绿茵场上,某球员在/处受到阻挡需要传球,请帮助他做出选择,应传给在8处的球员还是。处的球员,使其射门不易射偏.(不考虑其他因素)请同学们帮助他做出选择.二、合作探究探究点:三角形的外角 类型_ 应用三角形的外角求角的度数颐I 如图所示,P 为4ABC 内一点、,2BPC=150:N4昭=20,求/的度数.A解析:延长社交火于 或连接力尸并延长,构造三角形的外角,再利用外角的性质即可求出
20、N Z的度数.解:延长7交力。于点,则/郎a N&f分别为川瓦 4 ABE的外角,:.4BPC=/PEC+APCE,4PEC=NABE+/A,:2P E C=4BPC 4PCE=3 c -3 0 =120.:./A=/P E C NA8E=T20-2 0 =100.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和m 已知:如图为一五角星,求证:Z A+Z B+Z C+Z D+ZE=180.解析:根据三角形外角性质得出N%=N 8+N,Z E G F=Z A+Z C,根据三角形内角和定理得出尸+NF
21、G=180,代入即可得证.证明:,?/EFG、4EGF 分别是丛BDF、AAC G 的外角,,4 EFG=N6+乙D,4 E G F=/+NC 又:在如。中,A E+Z E G F+AEFG=,:.Z A+Z B+Z C+Z D+ZE=180.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.类型三 三角形外角的性质和角平分线的综合应用m 如图,/力切是45C的外角,B E 平分/ABC,CE平分/A C D,且应1、以 交于点2(1)如果N4=60。,ZABC=5Q,求/的度数;(2)猜想:与N/有什么数量关系(写出结论
22、即可);(3)如图,点后是/比两外角平分线应、C E 的交点、,探索N 与/之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得N47?=NZ+N4?C=60+50=110,:BE 平分/ABC,CE 平分 4ACD,.,.Zl=1zCZ?=55,N 2=)N43C=25.V Z ,+Z 2=Z 1,,N=N1 一乙CJZ2=30;(2)猜想:N=g/小(3):BE,*是两外角的平分线,二/2:1/。切,N4=,BCF,而NCBD=NA+NACB,乙 乙ABCF=Z.A+Z.ABC,.*.Z2=1(Z
23、+Z/1C,Z 4=1(Z/J+Z J6).V Z+Z2+Z4=180,乙 乙:.ZE+(ZA+ZAC&+|(Z +Z 6)=180,即N+,4+;(N 4+N Z%+N 480=乙 乙 乙 乙180.ZA+ZACB+ZABC=18Q,,/+:/力=90.乙方法总结:对于本题发现的结论要予以重视:图中,ZE=ZA;图中,N=90。-乙三、板书设计三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.11.3多边形及其内角和11.3.1多边形目标1.掌握多边形的定义及其有
24、关概念,理解正多边形及其相关概念.(重点)2 .正确区分凹多边形和凸多边形.(重点)3 .理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)一、情境导入利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).问题:请学生观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.二、合作探究探究点一:多边形的概念 类型 多边形及其概念项I下列图形不是凸多边形的是(解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.
25、由此可得选项D的图形不是凸多边形.故选D.方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于18 0。.通常所说的多边形指凸多边形.类型二 确定多边形的边数例 烟 若 一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14 或 15 或 16 B.15 或 16C.14 或 16 D.15 或 16 或 17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.方法总结:一个多边形截去一个角后,多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年人教版 八年 级数 上册 教学
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内