2021年陕西省榆林市榆阳区中考数学模拟试卷(二)(解析版).pdf
《2021年陕西省榆林市榆阳区中考数学模拟试卷(二)(解析版).pdf》由会员分享,可在线阅读,更多相关《2021年陕西省榆林市榆阳区中考数学模拟试卷(二)(解析版).pdf(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021年陕西省榆林市榆阳区中考数学模拟试卷(二)一、选 择 题(共10小题,每小题3分,计30分).I.好的算术平方根是()A-1-251D-iB-4C.52.如图,这是一个由2 个大小不一样的圆柱组成的几何体,则该几何体的俯视图是()3.如图,直线AC和直线8。相交于点O,OE平分N B O C.若Nl+N2=80,则/3 的度数 为()A.40B.50C.60D.704.如图,点 A 是 y 关于x 的函数图象上一点,当点A 沿图象运动,横坐标增加4 时,相应A.减 少 1B.减少2C.增 加 1D.减少31 25.计 算(至 m n?)n 2 的结果是()A.4MM6B.-/n2n44
2、C.-nrn44D.-7驾5九446.如图,在等腰ABC中,A B=B C=4,NA8C=45,尸是高A。和高BE的交点,则线段D F的长度为()C.4-2 2 D.双7.如图,在平面直角坐标系中,矩形OA3C的点A 和点。分别落在工轴和y 轴正半轴上,A O=4,直线/:y=3x+2经过点C,将直线/向下平移机个单位,设直线可将矩形0A8C的面积平分,则2的 值 为()C.4D.88.如图,。ABC。的对角线AC与 8。相交于点0,且NOCO=90.若 E 是 BC边的中点,8。=10,A C=6,则 0E 的 长 为()A.1.5B.2C.2.5D.39.如图,A8C 内接于。,ZB A
3、C=120,AB=4C=4,3。为O O 的直径,则O O 的B.6C.8D.121 0.抛物线y=jr+hx+2的对称轴为直线x=.若关于x 的一元二次方程x2+hx+2-t=0(r为实数)在-l x 4 的范围内有实数根,贝卜的取值范围是()A.lW f5 B.C.5r10 D.lWf,使/DBC=35(保留作图痕迹,不写作法).B18.如图,四边形A8CD是菱形,点 M、N 分别在AB、A。上,且 B M=D N,MG/AD,NF/AB,点 G、尸分别在C、BC,MG与 N F相交于点E.求证:M E=NE.19.教育部日前发出通知,进一步加强中小学生睡眠管理工作,为保证中小学生享有充足
4、的睡眠时间,必须切实减轻学生课业负担.某中学为调查本校学生平均每天做作业所用时间的情况,随机调查了 50名同学,如图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题.(1)所调查学生平均每天做作业所用时间的中位数是 小时,并补全条形统计图;(2)求所调查学生平均每天做作业所用时间的平均数;(3)若该校共有1200名学生,根据以上调查结果估计该校全体学生平均每天做作业时间少于3 小时的学生共有多少名?.人 数/名(小时)20.如图,已知雕塑底座A 8为 12.8米,小军及其小组成员想利用所学知识测量塑像的高度B E,测量方法如下:在地面上的点C 处测得塑像顶端E 的仰角为60
5、,从 点 C 走到点D,测 得 CQ=7.2米,从点。测得塑像底端B 的仰角为45。,已知点A、B、E 在同一条垂直于地面的直线上,点 C、。、A 在一条直线上.请你根据以上信息,求塑像的高度B E.(参考数据:页 3.4 1,%.7 3)D2 1 .某公司计划从厂家采购一批“秦岭四宝国潮档案袋”(以下简称:档案袋)和“秦岭四宝国潮手账本”(以下简称:手账本),已知档案袋1 0 元/个,手账本1 5 元/本,经了解,厂家有两种优惠方案:方案一,购买手账本没有优惠,购买档案袋不超过2 0 个时,每个都按九折优惠,超过2 0 个时,超过部分每个按七折优惠;方案二,档案袋和手账本都按原价的八折优惠.
6、若该公司购买x个档案袋,1 0 本手账本.(1)请分别求两种方案下该公司购买档案袋和手账本所需的总费用y (元)与 x (个)之间的函数关系式;(2)若该公司决定购买档案袋3 0 个,请你通过计算,在两种方案中,帮助该公司选择所花总费用较少的一种.秦岭四宝国潮档案袋秦岭四宝国潮手账本2 2 .为庆祝中国共产党成立1 0 0 周年,某校团委将举办文艺演出.小明和小亮计划结伴参加该文艺演出.小 明想参加唱红歌节目,小亮想参加朗诵节目.他们想通过做游戏来决定参加哪个节目,于是小明设计了一个游戏,如图,分别把转盘A,8分成4等份和5等份,并在每一份内标上数字.游戏规则是:小明转动A转盘,同时小亮转动8
7、转盘,当两个转盘停止后,指针所在区域的数字之积为奇数时,则按照小明的想法参加唱红歌节目;当数字之积为偶数时,则按照小亮的想法参加朗诵节目.如果指针恰好在分割线上时,则需重新转动转盘.(1)求 A转盘停止后,指针指向奇数的概率;(2)请利用画树状图或列表的方法,分别求他们参加唱红歌和朗诵节目的概率,并说明这个游戏规则对小明、小亮双方公平吗?2 3 .如图,在 A B C中,A B=A C,以A C为 直 径 的 交B C于点。,过点。作。的切线 D E 交 A B于E.(1)求证:D E L A B;2 4 .如图,已知抛物线 =加+以(a W O)过点B (1,3)和点A (4,0),过点8作
8、直线B C x轴,交y轴于点C.(1)求抛物线的函数表达式;(2)点P是直线B C下方抛物线上一动点,过点P作直线B C的垂线,垂足为D连接O B,是否存在点P,使得以B,D,P为顶点的三角形与 B OC相似,若存在,求出对应点P的坐标;若不存在,请说明理由.2 5.问题探究:图3图1图2(1)如 图I,A B/C D,A C与 即 交于点E,若A A B E的面积为1 6,A E=2C E,贝QCQE的面积为;(2)如图2,在矩形A B C Z)中,连接A C,B E L 4 c于点E,已知B E=3,求矩形A B C。面积的最小值;问题解决:(3)某地方政府欲将一块如图3所示的平行四边形A
9、 B C O空地改建为健身娱乐广场,已知A B=3 0()y米,乙4=6 0。,广场入口在A B E K B P=2A P.根据规划,过点尸铺设两条夹角为1 2 0 的笔直小路P M、P N(即NM P N=1 2 0 ),点M、N分别在边A。、B C上(包含端点)P A M区域拟建为健身广场,P B N区域拟建为儿童乐园,其他区域铺设绿化草坪.已知建健身广场每平方米需0.8万元,建儿童乐园每平方米需0.2万元,按规划要求,建成健身广场和儿童乐园至少需要总费用多少万元?(结果保留根号)参考答案一、选 择 题(共 10小题,每小题3 分,计 30分,每小题只有一个选项是符合题意的)1.2的算术平
10、方根是()A.B.i C.D.25 5 5 5【分析】利用算术平方根的定义求解即可.脩/)2=蚩,.2 的算术的平方根是10故选:D.2.如图,这是一个由2 个大小不一样的圆柱组成的几何体,则该几何体的俯视图是()【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.解:从上面看可得两个同心圆.故 选:B.3.如 图,直线AC和直线3 0 相交于点O,OE平分N B O C.若/1+/2=8 0 ,则N 3 的度A.40 B.50C.60D.70【分析】根据对顶角和邻补角的定义即可得到/B O C 的度数,再根据角平分线即可得出Z 3 的度数.解:V Z 1 =Z2,Z l+Z2=80
11、,./1=/2=4 0 ,.-ZBOC=140,又平分N8OC,-.Z3=140 4-2=70.故选:D.4.如图,点A 是 y 关于x 的函数图象上一点,当点A 沿图象运动,横坐标增加4 时,相应A.减 少 1 B.减少2 C.增 加 1 D.减少3【分析】由函数图象可知A 点坐标,再将A 点横坐标增加4,找出此时对应点的坐标,比较A 点前后的纵坐标即可.解:由函数图象可知A 点坐标为(-2,4),当 A 点横坐标增加4 时,对应点坐标为(2,1),纵坐标增加1-4=-3,即减少3.故选:D.125.+n 2 的结果是()A.4w2n6 B.-/w2rt4 C.m2n4 D.-m5n44 4
12、 4【分析】直接利用整式的除法运算法则以及积的乘方运算法则分别化简得出答案.解:原式二 ,心小序4 m2n4.4故选:C.6.如图,在等腰ABC中,AB=8C=4,/ABC=45,尸是高4。和高BE的交点,则线段 O F 的长度为()BDA.2M B.2 C.4-2我 D.我【分析】根 据 已 知 的 条 件 可 证 明 尸且40。即可推出。尸=CO解决问题.解:-AD_LBCf:.ZADB=90,V ZABC=45,J NABD=NDAB,:.BD=ADf:ZCAD+ZAFE=90,ZCAD+ZC=90,NAFE=NBFD,:.NAFE=NC,/AFE=NBFD,:/C=/B F D,在5Q
13、F和ADC中,2C=NBFD AD=BD,tZBDF=ZADC:./BDF/ADC(AAS),:.DF=CD,VAB=BC=4,:.BD=2&,:.DF=CD=4-2&,故选:C.7.如图,在平面直角坐标系中,矩形0ABe的点4和点。分别落在x轴和y轴正半轴上,A 0=4,直线/:y=3x+2经过点C,将直 线/向下平移机个单位,设直线可将矩形OA8C的面积平分,则 加 的 值 为()A.7B.6C.4 D.8【分析】首先连接AC、B O,交于点D当y=3 x+2经过。点时,该直线可将矩形O AB C的面积平分,然后计算出过D且平行直线y=3 x+2的直线解析式,从而可得直线y=3 x+2要向
14、下平移6个单位,进而可得答案.解:连接AC、B O,交于点。,在直线y=3 x+2中,当 x=0 时,y=2,C点坐标为(0,2),又.Q=4,:.B(4,2),当y=3x+2经过D点时,该直线可将矩形O A B C的面积平分;:AC,B 0是矩形0 AB e的对角线,:.OD=BD,V O (0,0),B(4,2),:.D(2,1),将直线/向下平移机个单位,则平移后直线的解析式为y=3 x+2 -m,:D(2,1),1=3 X 2+2 -m,解得m=7,故选:A.8.如图,。ABC。的对角线AC与 8。相交于点。,且NOCQ=90.若石是8 C 边的中点,BD=10,A C=6,则 0E
15、的 长 为()A.1.5 B.2 C.2.5 D.3【分析】根据平行四边形的性质得出OA=3,0 8=5,进而利用勾股定理得出A 8的长,利用三角形中位线得出0 即可.解::四边形A8CO是平行四边形,BD=10,A C=6f:.O A=3f 0 8=5,AB/DC,ZOCD=90 ,A ZBAO=90,A=V0B2-0A2=752-32=4*Y E 是 BC边的中点,OA=OC:.20E=AB,:.OE=2,故选:B.9.如图,8 c 内接于。0,NBAC=120。,AB=4C=4,8。为。的直径,则。的半 径 为()A.4 B.6 C.8 D.12【分析】连接0 4 由等腰三角形的性质得出
16、N C=/A 8 C,证明AAOB为等边三角形,由等边三角形的性质得出0 4=4 8=4,则可得出答案.解:连接。4Dw.A8=AC,A Z C=NABGVZBAC=120,.”_180-120 /Q D U j/.ZB OA=2ZC=60 ,:OA =OB,.4 0 8 为等边三角形,:.OA=A B=4,则O O 的半径为4.故选:41 0.抛物线y=/+x+2的对称轴为直线x=1.若关于x 的一元二次方程臼以+2-f=0(f为实数)在-1XV 4的范围内有实数根,则/的取值范围是()A.1W/V5 B.C.5/10 D.1W/V10【分析】先利用抛物线的对称轴方程求出b=-2,则可把关于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 陕西省 榆林市 榆阳区 中考 数学模拟 试卷 解析
限制150内