2021年中考数学模拟试卷含答案 (八).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021年中考数学模拟试卷含答案 (八).pdf》由会员分享,可在线阅读,更多相关《2021年中考数学模拟试卷含答案 (八).pdf(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021年中考数学模拟试卷一、选 择 题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3 分)在平面直角坐标系中,点(-1,机 2+i)一 定 在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3 分)化简:(-2 a)a-(-2“)2 的结果是()A.0B.2a2C.-6a2D.-4 a23.(3 分)在数轴上,点A 所表示的实数为3,点 8 所表示的实数为m O A 的半径为2.下列说法中不正确的是()A.当“V 5 时,点 B 在。A 内B.当时,点 B 在O A 内C.当“5 时,点 B 在。A 外4.(3 分)如图,分别是由若干个完全相同的小正方体组
2、成的一个儿何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()5.A.2 个或3 个B.3 个或4 个C.4 个或5 个D.5 个或6 个(3 分)设有反比例函数y 上 包,(XI,xy)、(X2,y2)为其图象上的两点,若 XI0”,则的取值范围是()A.k0B.k-1D.k 08.(3分)不等式组|I,的解集是子(x+2)=以 2+(3启-2 k+l)x+k 的“带线”/与2x轴,y 轴所围成的三角形面积的取值范围.六、(本大题共1 2 分)2 3.(1 2 分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角NAi Ao B i =a(a。
3、5、。6所表示的角如图所示.(2)图 1-图4中,连接4),时,在不添加其他辅助线的情况下,是否存在与直线4),垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设 正 边 形 4OAIA2 4-1 与 正 边 形 4)8 出2 1 重 合(其中,A1 与 3 1 重合),现将正多边形4曲历为 绕顶点4)逆时针旋转a(0 a 岂辿。);n(3)设。”与上述“。3、。4、”的意义一样,请直接写出。”的度数;(4)试猜想在正边形的情形下,是否存在与直线A o H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说
4、明理由.2021年中考数学模拟试卷参考答案与试题解析一、选 择 题(本大题共6 小题,每小题3 分,共 18分,每小题只有一个正确选项)1.(3 分)在平面直角坐标系中,点(-1,/+)一 定 在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因 为 点(-1,P+),横坐标 0,纵坐标步+1 一定大于0,所以满足点在第二象限的条件.故选:B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+-).2.
5、(3 分)化简:(-(-2a)2的结果是()A.0 B.2a1 C.-6a2 D.-4 a2【分析】根据单项式的乘法法则,积的乘方的性质,合并同类项的法则,计算后直接选取答案.【解答】解:(-(-2“)2,=-2a2-4a2,-6a1.故选:C.【点评】本题考查积的乘方,单项式的乘法,要注意符号的运算,是同学们容易出错的地方.3.(3 分)在数轴上,点A 所表示的实数为3,点 8 所表示的实数为a,O A 的半径为2.下列说法中不正确的是()A.当“5 时,点 B 在O A 内 B.当 l a 5 时,点 B 在内C.当“5 时,点 B 在。A 外【分析】先找出与点A 的距离为2 的 点 1和
6、 5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心4 在数轴上的坐标为3,圆的半径为2,.当d=r 时,0A与数轴交于两点:1、5,故当=1、5时点B在。A上;当即当1 “?即当a V l 或 a5时,点 8在O A外.由以上结论可知选项8、C、。正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d ,一 时,点在圆外;当 d=/时,点在圆上;当时,点在圆内.4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()主视图 俯视图A.2个或3
7、 个 B.3个或4个 C.4个或5个 D.5 个或6个【分析】根据题意,主视图以及俯视图都是由3个小正方形组成,利用空间想象力可得出该几何体由4或 5个小正方形组成.【解答】解:根据本题的题意,由主视图可设计该几何体如图:想得到题意中的俯视图,只需在图(2)中的A位置添加一个或叠放1 个或两个小正方形,故组成这个几何体的小正方形的个数为4个或5个.【点评】本题考查了由几何体的视图获得几何体的方法.在判断过程中要寻求解答的好思路,不要被几何体的各种可能情况所困绕.5.(3分)设有反比例函数y 1 之1,(x i,yi)、(X 2,)2)为其图象上的两点,若 x i 0 V%2X时 yi ”,则人
8、的取值范围是()A.k 0 B.k -1 D.k-【分析】若 xi 0 x2 时,则对应的两个点(xi,y i)、(X2,”)分别位于两个不同的象限,当时,反比例系数一定小于0,从而求得的范围.【解答】解:根据题意得:什10;解得:k 1 X 返=瓜,2 2 4 _ 当1XW 2时,重叠三角形的边长为2-x,高为返(红)“_2y=a(2-x)X6(2-X)一 心 叶 炎,2 2 4 当 x=2 时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.【点评】本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(本大题共6 小题,每小题3 分,共 18分)
9、7.(3 分)据相关报道,近 5年中国农村年均脱贫1 3 7 0 万人.1 3 7 0 万可用科学记数法表示为 1 3 7 X 1()7 .【分析】科学记数法的表示形式为“X 1 0 的形式,其 中 lW|a|1时,是正数;当原数的绝对值 08.(3 分)不等式组 1,、”的 解 集 是%1.-4(X+2)。【解答】解春/2)-2,故此不等式组的解集为:x l.2故答案为:x l.2【点评】本题考查的是解一元一次不等式组,熟 知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3 分)分解因式:/-%=x (x+1)(x -1).【分析】本题可先提公因式X,分
10、解成X (?-1),而/-1 可利用平方差公式分解.【解答】解:x3-x,=x(x2-1),x(x+1)(X -1 ).故答案为:x (x+1)(X-1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.10.(3 分)如图,在ABC 中,点 P 是AABC 的内心,PIO ZPBC+ZPCA+Z PAB=90.【分析】根据三角形的内心的定义知内心是三角形三角平分线的交点,根据三角形内角和定理可以得到题目中的三个角的和.【解答】解:点P 是AABC的内心,平分N A B C,必 平 分 NBAC,PC 平分NACB,V ZABC
11、+ZACB+ZBAC=180,/.ZPBC+ZPCA+ZPAB=90,故答案为:90【点评】本题考查了三角形的内心的性质,解题的关键是正确的理解三角形的内心的定义,是三角形三内角的平分线的交点.11.(3 分)如 图,把正方形铁片O4BC置于平面直角坐标系中,顶点A 的坐标为(3,0),点 P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90。,第一次旋转至图位置,第二次旋转至图位置,则正方形铁片连续旋转2017次后,点尸的坐标为(6053,2).X第一次第二次C-牛-p P A/x【分析】首先求出Pl P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P
12、(5,2),第二次 2(8,1),第三次P3(10,1),第四次P4(13,2),第五次尸5(17,2),发现点P 的位置4 次一个循环,:2017+4=504 余 1,P2017的纵坐标与P 相同为2,横坐标为5+12X504=6053,.”2017(6053,2),故答案为(6053,2).【点评】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.12.(3 分)平面内有四个点 A、。、B、C,其中NAOB=120,ZACB=60,AO-BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【分析】分类讨论:如 图 1,根
13、据圆周角定理可以推出点C 在以点。为圆心的圆上;如图2,根据已知条件可知对角NA0B+/AC8=180,则四个点A、。、B、C 共圆.分类讨论:如 图 1,如 图 2,在不同的四边形中,利用垂径定理、等边M4。的性质来求O C的长度.【解答】解:如 图 1,.乙4。8=120,ZACB=60,.,.N A C8=JL/AOB=60,2.点C 在以点。为圆心的圆上,且在优弧A 8上.:.OC=AO=BO=2-,如图 2,V ZAOB=120,NACB=60,.NAOB+/ACS=180,四个点A、。、B、C 共圆.设这四点都在O M 上.点 C 在优弧A 8上运动.连接 OM、AM,AB、MB.
14、V ZACB=60,A ZAM B=2ZACB=120.:AO=BO=2,N4WO=NBMO=60.又;MA=MO,.AMO是等边三角形,.MA=AO=2,M4VOCW2M4,即 2,CELLAB 于点 E,8。与 CE 相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图中作线段BC的中点P;(2)在 图 中,在OB,O C 上 分 别 取 点 M,N,使MN/B C.【分析】(1)在图中作线段BC的中点P即可;(2)在图中,在 02,0 C上分别取点M,N,使即可.【解答】解:图图(1)如解图所示,点 P即为所求;(2)如解图所示,MN即为所求.【点评】
15、本题考查了作图-复杂作图,解决本题的关键是综合运用全等三角形的判定与性质、线段垂直平分线的性质、等腰三角形的判定与性质准确画图.1 6.(6分)如 图,过 点 A (2,0)的两条直线/i,/2 分别交y轴于点8,C,其中点B在原点上方,点 C在原点下方,己知(1)求点B的坐标;求直线/2 的解析式.【分析】(1)先根据勾股定理求得8 0 的长,再写出点8 的坐标;(2)先根据 A 8C 的面积为4,求 得 C。的长,再根据点A、C的坐标,运用待定系数法求得直线12的解析式.【解答】解:(I 点A的坐标为(2,0),:.A 0=2f在直角三角形。4 8中,AO1+OB2=AB2fB P 21+
16、0B1=(万),,0B=3,:.B(0,3);(2)1ABC的面积为4,.4=8CXQA,BP4=ABCX2,2 2ABC=4,A OC=BC-0 8=4 -3=1,:.C(0,-1),设12的解析式为y=kx+b,(1则(2 k+b=0,解得 k 7,l b=T|b=-l直线上 所对应的函数关系式为),=L-1.2【点评】本题主要考查了两条直线的交点问题和坐标与图形的性质、三角形的面积,属于基础题,解题的关键是掌握勾股定理以及待定系数法.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表
17、的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为2 0 0人,m=20,n=0.15;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约 有1 5 0 0人.东进战略关注情况条形统计图人 数(人)【分析】(1)根据频数+频率,求得采访的人数,根据频率X总人数,求得机的值,根据 30+2 00,求得的值;(2)根据,的值为2 0,进行画图;(3)根据0.1 X 1 5 000进行计算即可.【解答】解:(1)此次采访的人 数 为
18、 1 004-0.5=2 00(人),机=0.1 X 2 00=2 0,=3 0+2 00=0.1 5;(2)如图所示;(3)高度关注东进战略的深圳市民约有0.1 X 1 5 000=1 5 00(人).东迸战略关注情况条形统计图人 数(人)【点评】本题主要考查了条形统计图以及频数与频率,解决问题的关键是掌握:频率是指每个对象出现的次数与总次数的比值(或者百分比),即 频 率=加 暮 驾 解 题 时 注数 据 忌 数意,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.四、(本大题共3 小题,每小题8 分,共 24分)1 8.(8 分)某兴趣小组借助无人飞机航拍校园.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年中考数学模拟试卷含答案 八 2021 年中 数学模拟 试卷 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内