2020年高考真题数学(文)(全国卷ⅰ)+含解析.docx
《2020年高考真题数学(文)(全国卷ⅰ)+含解析.docx》由会员分享,可在线阅读,更多相关《2020年高考真题数学(文)(全国卷ⅰ)+含解析.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 绝密启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合则( )A. B. C. D. 【答案】D【解析】【分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所
2、以,又因为,所以,故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若,则( )A. 0B. 1C D. 2【答案】C【解析】【分析】先根据将化简,再根据向量的模的计算公式即可求出【详解】因为,所以故选:C【点睛】本题主要考查向量的模的计算公式的应用,属于容易题3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. B. C. D. 【答案】D【解析】【分析】设,利用得到关于的方
3、程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.4.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )A. B. C. D. 【答案】A【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从5个点中任取3个有共种不同取法,3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,
4、考查学生数学运算能力,是一道容易题.5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10C至40C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )A. B. C. D. 【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率和温度的回归方程类型的是.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.已知圆,过点(1,2)的直线被该
5、圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据直线和圆心与点连线垂直时,所求的弦长最短,即可得出结论.【详解】圆化为,所以圆心坐标为,半径为,设,当过点的直线和直线垂直时,圆心到过点的直线的距离最大,所求的弦长最短,根据弦长公式最小值为.故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.7.设函数在的图像大致如下图,则f(x)的最小正周期为( )A. B. C. D. 【答案】C【解析】【分析】由图可得:函数图象过点,即可得到,结合是函数图象与轴负半轴的第一个交点即可得到,即可求得,再利用三角函数周期公式即可得解.【详解
6、】由图可得:函数图象过点,将它代入函数可得:又是函数图象与轴负半轴的第一个交点,所以,解得:所以函数的最小正周期为故选:C【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.8.设,则( )A. B. C. D. 【答案】B【解析】【分析】首先根据题中所给的式子,结合对数的运算法则,得到,即,进而求得,得到结果.【详解】由可得,所以,所以有,故选:B.【点睛】该题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.9.执行下面的程序框图,则输出的n=( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析
7、】根据程序框图的算法功能可知,要计算满足的最小正奇数,根据等差数列求和公式即可求出【详解】依据程序框图的算法功能可知,输出的是满足的最小正奇数,因为,解得,所以输出的故选:C【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前项和公式的应用,属于基础题10.设是等比数列,且,则( )A. 12B. 24C. 30D. 32【答案】D【解析】【分析】根据已知条件求得的值,再由可求得结果.【详解】设等比数列的公比为,则,因此,.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题11.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为( )A. B. 3C. D. 2【答案】
8、B【解析】【分析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.12.已知为球的球面上的三个点,为的外接圆,若的面积为,则球的表面积为( )A. B. C. D. 【答案】A【解析】【分析】由已知可得等边的外接圆半径,进而求出其边长,得出的值,根据球截面性质,求出球的半径,即可得出结论.【详解】设圆半径为,球的半径为,依题意,得
9、,由正弦定理可得,根据圆截面性质平面,球的表面积.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分.13.若x,y满足约束条件则z=x+7y的最大值为_.【答案】1【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值.【详解】绘制不等式组表示的平面区域如图所示,目标函数即:,其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故答案:1【点睛】求线性
10、目标函数zaxby(ab0)的最值,当b0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.14.设向量,若,则_.【答案】5【解析】【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.【详解】由可得,又因为,所以,即,故答案为:5.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.15.曲线的一条切线的斜率为2,则该切线的方程为_.【答案】【解析】【分析】设切线的切点坐标为,对函数求导,利用,求出,代入曲线方程求出,得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 考真题 数学 全国卷 解析
限制150内