考点40 直线与圆锥曲线的位置关系.doc
《考点40 直线与圆锥曲线的位置关系.doc》由会员分享,可在线阅读,更多相关《考点40 直线与圆锥曲线的位置关系.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 考点40直线与圆锥曲线的位置关系一、 解答题1.(12分)(2018全国卷I高考理科T19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为.(1)当l与x轴垂直时,求直线AM的方程.(2)设O为坐标原点,证明:OMA=OMB.【解析】(1)由已知得F(1,0),l的方程为x=1.代入+y2=1可得,点A的坐标为或.所以直线AM的方程为y=-x+或y=x-.(2)当l与x轴重合时,OMA=OMB=0.当l与x轴垂直时,OM为线段AB的垂直平分线,所以OMA=OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k0),A(x1,y1),B(x2,y2
2、),则x1,x20,x20.由得ky2-2y-4k=0,可知y1+y2=,y1y2=-4.直线BM,BN的斜率之和为kBM+kBN=+=.将x1=+2,x2=+2及y1+y2,y1y2的表达式代入式分子,可得x2y1+x1y2+2(y1+y2)=0.所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以ABM=ABN.综上,ABM=ABN.3.(2018全国卷II高考理科T19)(12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.【命题意图】本题考查抛物线、圆的方程、直线与
3、圆锥曲线的位置关系,着重考查学生的逻辑推理和数学运算的综合能力.【解析】(1)由题意得F(1,0),l的方程为y=k(x-1)(k0).设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0.=16k2+160,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11
4、)2+(y+6)2=144.4.(2018全国卷II高考文科T20)(12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.【命题意图】本题考查抛物线、圆的方程、直线与圆锥曲线的位置关系,着重考查学生的逻辑推理和数学运算的综合能力.【解析】(1)由题意得F(1,0),l的方程为y=k(x-1)(k0).设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0.=16k2+160,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.
5、由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.5.(2018全国高考理科T20)(12分)已知斜率为k的直线l与椭圆C:+=1交于A,B两点.线段AB的中点为M.(1)证明:k-;(2)设F为C的右焦点,P为C上一点,且+=0.证明:,成等差数列,并求该数列的公差.【命题意图】本题考查直线与椭圆的位置关系以及椭圆的几何性质,考查推理
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学精品资料 新高考数学精品专题 高考数学压轴冲刺 高中数学课件 高中数学学案 高一高二数学试卷 数学模拟试卷 高考数学解题指导
限制150内